9 research outputs found

    Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism

    Get PDF
    Faithful replication and repair of DNA lesions ensure genome maintenance. During replication in eukaryotic cells, DNA is unwound by the CMG helicase complex, which is composed of three major components: the Cdc45 protein, Mcm2-7, and the GINS complex. The CMG in complex with DNA polymerase epsilon (CMG-E) participates in the establishment and progression of the replisome. Impaired functioning of the CMG-E was shown to induce genomic instability and promote the development of various diseases. Therefore, CMG-E components play important roles as caretakers of the genome. In Saccharomyces cerevisiae, the GINS complex is composed of the Psf1, Psf2, Psf3, and Sld5 essential subunits. The Psf1-1 mutant form fails to interact with Psf3, resulting in impaired replisome assembly and chromosome replication. Here, we show increased instability of repeat tracts (mononucleotide, dinucleotide, trinucleotide and longer) in yeast psf1-1 mutants. To identify the mechanisms underlying this effect, we analyzed repeated sequence instability using derivatives of psf1-1 strains lacking genes involved in translesion synthesis, recombination, or mismatch repair. Among these derivatives, deletion of RAD52, RAD51, MMS2, POL32, or PIF1 significantly decreased DNA repeat instability. These results, together with the observed increased amounts of single-stranded DNA regions and Rfa1 foci suggest that recombinational mechanisms make important contributions to repeat tract instability in psf1-1 cells. We propose that defective functioning of the CMG-E complex in psf1-1 cells impairs the progression of DNA replication what increases the contribution of repair mechanisms such as template switch and break-induced replication. These processes require sequence homology search which in case of a repeated DNA tract may result in misalignment leading to its expansion or contraction

    Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex

    Get PDF
    DNA replication is performed by replisome proteins, which are highly conserved from yeast to humans. The CMG [Cdc45-Mcm2–7-GINS(Psf1–3, Sld5)] helicase unwinds the double helix to separate the leading and lagging DNA strands, which are replicated by the specialized DNA polymerases epsilon (Pol ε) and delta (Pol δ), respectively. This division of labor was confirmed by both genetic analyses and in vitro studies. Exceptions from this rule were described mainly in cells with impaired catalytic polymerase ε subunit. The central role in the recruitment and establishment of Pol ε on the leading strand is played by the CMG complex assembled on DNA during replication initiation. In this work we analyzed the consequences of impaired functioning of the CMG complex for the di�vision labor between DNA polymerases on the two replicating strands. We showed in vitro that the GINSPsf1–1 complex poorly bound the Psf3 subunit. In vivo, we observed increased rates of L612M Pol δ-specific mutations during replication of the leading DNA strand in psf1–1 cells. These findings indicated that defective functioning of GINS impaired leading strand replication by Pol ε and necessitated involvement of Pol δ in the synthesis on this strand with a possible impact on the distribution of mutations and genomic stability. These are the first results to imply that the division of labor between the two main replicases can be severely influenced by a defective nonpolymerase subunit of the replisome

    Recombination and Pol ζ Rescue Defective DNA Replication upon Impaired CMG Helicase—Pol ε Interaction

    Get PDF
    The CMG complex (Cdc45, Mcm2–7, GINS (Psf1, 2, 3, and Sld5)) is crucial for both DNA replication initiation and fork progression. The CMG helicase interaction with the leading strand DNA polymerase epsilon (Pol ε) is essential for the preferential loading of Pol ε onto the leading strand, the stimulation of the polymerase, and the modulation of helicase activity. Here, we analyze the consequences of impaired interaction between Pol ε and GINS in Saccharomyces cerevisiae cells with the psf1-100 mutation. This significantly affects DNA replication activity measured in vitro, while in vivo, the psf1-100 mutation reduces replication fidelity by increasing slippage of Pol ε, which manifests as an elevated number of frameshifts. It also increases the occurrence of single-strandedDNA(ssDNA) gaps and the demand for homologous recombination. The psf1-100 mutant shows elevated recombination rates and synthetic lethality with rad52D. Additionally, we observe increased participation of DNA polymerase zeta (Pol ζ) in DNA synthesis. We conclude that the impaired interaction between GINS and Pol ε requires enhanced involvement of error-prone Pol ζ, and increased participation of recombination as a rescue mechanism for recovery of impaired replication forks

    Time for a consensus conference on pain in neurorehabilitation

    Get PDF
    Pain represents a common problem in the setting of neurorehabilitation, in that it is a common outcome measure but may also have a negative effect on motor and cognitive outcomes. Guidelines, expert opinions or consensus statements on pain in neurorehabilitation are largely lacking. The Italian Consensus Conference on Pain in Neurorehabilitation (ICCPN) was promoted to answer some questions on this topic, and its recommendations may offer practical and useful information and represent the basis for future studies on pain in neurorehabilitation

    Time for a Consensus Conference on pain in neurorehabilitation

    No full text
    Pain represents a common problem in the setting of neurorehabilitation, in that it is a common outcome measure but may also have a negative effect on motor and cognitive outcomes. Guidelines, expert opinions or consensus statements on pain in neurorehabilitation are largely lacking. The Italian Consensus Conference on Pain in Neurorehabilitation (ICCPN) was promoted to answer some questions on this topic, and its recommendations may offer practical and useful information and represent the basis for future studies on pain in neurorehabilitation

    Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism

    No full text
    corecore