332 research outputs found
Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines
Preclinical animal studies have convincingly demonstrated that tumor immunity to self antigens can be actively induced and can translate into an effective anti-tumor response. Several of these observations are being tested in clinical trials. Immunization with xenogeneic DNA is an attractive approach to treat cancer since it generates T cell and antibody responses. When working in concert, these mechanisms may improve the efficacy of vaccines. The use of xenogeneic DNA in overcoming immune tolerance has been promising not only in inbred mice with transplanted tumors but also in outbred canines, which present with spontaneous tumors, as in the case of human. Use of this strategy also overcomes limitations seen in other types of cancer vaccines. Immunization against defined tumor antigens using a xenogeneic DNA vaccine is currently being tested in early phase clinical trials for the treatment of melanoma and prostate cancers, with proposed trials for breast cancer and Non-Hodgkin's Lymphoma
Meeting Report: Fourth International Congress of the Society for Melanoma Research
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73384/1/j.1755-148X.2007.00437.x.pd
Antibody and CD8+ T Cell Responses against HER2/neu Required for Tumor Eradication after DNA Immunization with a Flt-3 Ligand Fusion Vaccine
Abstract
Purpose: HER2/neu is frequently overexpressed in breast cancer. In a mouse model, vaccination with HER2/neu DNA elicits antibodies that confer partial protection against tumor challenge.
Experimental Design: To enhance antitumor immunity, we fused cDNA encoding Flt-3 ligand (FL) to the rat HER2/neu extracellular domain (neu), generating a chimeric FLneu molecule. FLneu and neu DNA vaccines were compared for immunogenicity and their ability to protect mice from tumor challenge.
Results: The neu vaccine generated a HER2/neu-specific antibody response. In contrast, vaccination with FLneu induced CD8+ T cells specific for HER2/neu but a negligible anti-HER2/neu antibody response. The switch from an antibody-mediated to T cell–mediated response was due to different intracellular localization of neu and FLneu. Although the neu protein was secreted, the FLneu protein was retained inside the cell, co-localizing with the endoplasmic reticulum, facilitating processing and presentation to T cells. The neu and FLneu vaccines individually conferred only weak tumor immunity. However, efficient tumor rejection was seen when neu and FLneu were combined, inducing both strong anti-HER2/neu-specific antibody and T cell responses. Adoptive transfer of both immune CD8+ T cells and immune sera from immunized mice was required to confer tumor immunity in naïve hosts.
Conclusions: These results show that active induction of both humoral and cellular immunity to HER2/neu is required for efficient tumor protection, and that neither response alone is sufficient
Recommended from our members
Pre-treatment serum vascular endothelial growth factor is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab
Alphavirus Replicon Particles Expressing TRP-2 Provide Potent Therapeutic Effect on Melanoma through Activation of Humoral and Cellular Immunity
Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs.VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors.This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials
Immunologic responses to xenogeneic tyrosinase DNA vaccine administered by electroporation in patients with malignant melanoma
BACKGROUND: Prior studies show that intramuscular injection and particle-mediated epidermal delivery of xenogeneic melanosomal antigens (tyrosinase or Tyr, gp100) induce CD8(+) T cell responses to the syngeneic protein. To further define the optimal vaccination strategy, we conducted a phase I study of in vivo electroporation (EP) of a murine Tyr DNA vaccine (pINGmuTyr) in malignant melanoma patients. METHODS: Human leukocyte antigen (HLA)-A1, A2, A24 or B35 stage IIb-IV melanoma patients received up to five doses of the mouse tyrosinase DNA vaccine by EP every three weeks at dose levels of 0.2 mg, 0.5 mg, or 1.5 mg per injection. Peripheral blood mononuclear cells (PBMC) were collected, cultured with a peptide pool containing eight HLA class I-restricted Tyr-specific T-cell epitopes, and analyzed by HLA-A*0101-restricted tetramers and intracellular cytokine staining (ICS). RESULTS: Twenty-four patients received ≥1 dose of the pINGmuTyr vaccine; PBMCs from 21 patients who completed all five doses were available for Tyr immune assays. The only common toxicity was grade 1 injection site reaction. Six of 15 patients (40%) in the 1.5 mg dose cohort developed Tyr-reactive CD8(+) T cell responses following stimulation, defined as a ≥3 standard deviation increase in baseline reactivity by tetramer or ICS assays. No Tyr-reactive CD8(+) T cell response was detected in the 0.2 mg and 0.5 mg dose cohort patients. Epitope spreading of CD8(+) T cell response to NY-ESO-1 was observed in one patient with vitiligo. One patient subsequently received ipilimumab and developed an enhanced Tyr-reactive response with polyfunctional cytokine profile. After a median follow-up of 40.9 months, median survival has not been reached. CONCLUSIONS: A regimen of five immunizations with pINGmuTyr administered by EP was found to be safe and resulted in Tyr-reactive immune responses in six of 15 patients at 1.5 mg dose cohort. TRIAL REGISTRATION: ClinicalTrials.gov NCT0047113
Agonist Anti-GITR Monoclonal Antibody Induces Melanoma Tumor Immunity in Mice by Altering Regulatory T Cell Stability and Intra-Tumor Accumulation
In vivo GITR ligation has previously been shown to augment T-cell-mediated anti-tumor immunity, yet the underlying mechanisms of this activity, particularly its in vivo effects on CD4+ foxp3+ regulatory T cells (Tregs), have not been fully elucidated. In order to translate this immunotherapeutic approach to the clinic it is important gain better understanding of its mechanism(s) of action. Utilizing the agonist anti-GITR monoclonal antibody DTA-1, we found that in vivo GITR ligation modulates regulatory T cells (Tregs) directly during induction of melanoma tumor immunity. As a monotherapy, DTA-1 induced regression of small established B16 melanoma tumors. Although DTA-1 did not alter systemic Treg frequencies nor abrogate the intrinsic suppressive activity of Tregs within the tumor-draining lymph node, intra-tumor Treg accumulation was significantly impaired. This resulted in a greater Teff:Treg ratio and enhanced tumor-specific CD8+ T-cell activity. The decreased intra-tumor Treg accumulation was due both to impaired infiltration, coupled with DTA-1-induced loss of foxp3 expression in intra-tumor Tregs. Histological analysis of B16 tumors grown in Foxp3-GFP mice showed that the majority of GFP+ cells had lost Foxp3 expression. These “unstable” Tregs were absent in IgG-treated tumors and in DTA-1 treated TDLN, demonstrating a tumor-specific effect. Impairment of Treg infiltration was lost if Tregs were GITR−/−, and the protective effects of DTA-1 were reduced in reconstituted RAG1−/− mice if either the Treg or Teff subset were GITR-negative and absent if both were negative. Our results demonstrate that DTA-1 modulates both Teffs and Tregs during effective tumor treatment. The data suggest that DTA-1 prevents intra-tumor Treg accumulation by altering their stability, and as a result of the loss of foxp3 expression, may modify their intra-tumor suppressive capacity. These findings provide further support for the continued development of agonist anti-GITR mAbs as an immunotherapeutic strategy for cancer
Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma
PURPOSE In the phase III CheckMate 067 trial, durable clinical benefit was demonstrated previously with nivolumab plus ipilimumab and nivolumab alone versus ipilimumab. Here, we report 6.5-year efficacy and safety outcomes. PATIENTS AND METHODS Patients with previously untreated unresectable stage III or stage IV melanoma were randomly assigned 1:1:1 to receive nivolumab 1 mg/kg plus ipilimumab 3 mg/kg once every 3 weeks (four doses) followed by nivolumab 3 mg/kg once every 2 weeks (n = 314), nivolumab 3 mg/kg once every 2 weeks (n = 316), or ipilimumab 3 mg/kg once every 3 weeks (four doses; n = 315). Coprimary end points were progression-free survival and overall survival (OS) with nivolumab plus ipilimumab or nivolumab versus ipilimumab. Secondary end points included objective response rate, descriptive efficacy assessments of nivolumab plus ipilimumab versus nivolumab alone, and safety. Melanoma-specific survival (MSS; descriptive analysis), which excludes deaths unrelated to melanoma, was also evaluated. RESULTS Median OS (minimum follow-up, 6.5 years) was 72.1, 36.9, and 19.9 months in the combination, nivolumab, and ipilimumab groups, respectively. Median MSS was not reached, 58.7, and 21.9 months, respectively; 6.5-year OS rates were 57%, 43%, and 25% in patients with BRAF-mutant tumors and 46%, 42%, and 22% in those with BRAF–wild-type tumors, respectively. In patients who discontinued treatment, the median treatment-free interval was 27.6, 2.3, and 1.9 months, respectively. Since the 5-year analysis, no new safety signals were observed. CONCLUSION These 6.5-year CheckMate 067 results, which include the longest median OS in a phase III melanoma trial reported to date and the first report of MSS, showed durable, improved clinical outcomes with nivolumab plus ipilimumab or nivolumab versus ipilimumab in patients with advanced melanoma and, in descriptive analyses, with the combination over nivolumab monotherapy
- …