19 research outputs found
Quantum optics with near lifetime-limited quantum-dot transitions in a nanophotonic waveguide
Establishing a highly efficient photon-emitter interface where the intrinsic
linewidth broadening is limited solely by spontaneous emission is a key step in
quantum optics. It opens a pathway to coherent light-matter interaction for,
e.g., the generation of highly indistinguishable photons, few-photon optical
nonlinearities, and photon-emitter quantum gates. However, residual broadening
mechanisms are ubiquitous and need to be combated. For solid-state emitters
charge and nuclear spin noise is of importance and the influence of photonic
nanostructures on the broadening has not been clarified. We present near
lifetime-limited linewidths for quantum dots embedded in nanophotonic
waveguides through a resonant transmission experiment. It is found that the
scattering of single photons from the quantum dot can be obtained with an
extinction of , which is limited by the coupling of the quantum
dot to the nanostructure rather than the linewidth broadening. This is obtained
by embedding the quantum dot in an electrically-contacted nanophotonic
membrane. A clear pathway to obtaining even larger single-photon extinction is
laid out, i.e., the approach enables a fully deterministic and coherent
photon-emitter interface in the solid state that is operated at optical
frequencies.Comment: 27 pages, 7 figure
Dynamical photon-photon interaction mediated by a quantum emitter
Single photons constitute a main platform in quantum science and technology:
they carry quantum information over extended distances in the future quantum
internet and can be manipulated in advanced photonic circuits enabling scalable
photonic quantum computing. The main challenge in quantum photonics is how to
generate advanced entangled resource states and efficient light-matter
interfaces. Here we utilize the efficient and coherent coupling of a single
quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear
interaction between single-photon wavepackets. This inherently multimode
quantum system constitutes a new research frontier in quantum optics. We
demonstrate control of a photon with another photon and experimentally unravel
the dynamical response of two-photon interactions mediated by a quantum
emitter, and show that the induced quantum correlations are controlled by the
pulse duration. The work will open new avenues for tailoring complex photonic
quantum resource states
Approche hybride du traitement quantique de l'information
Approche hybride du traitement quantique de l'information La dualité onde-particule a conduit à deux façons d'encoder l'information quantique, les approches continues et discrètes. L'approche hybride a récemment émergé, et consiste à utiliser les concepts et boites à outils des deux approches, afin de venir à bout des limitations intrinsèques à chaque champ. Dans ce travail de thèse, nous allons dans une première partie utiliser des protocoles hybrides de façon à générer des états quantiques non-gaussiens de la lumière. A l'aide d'oscillateurs paramétriques optiques, et de détecteur de photons supraconducteurs, nous pouvons générer des photons uniques extrêmement purs très efficacement, ainsi que des états chats de Schrödinger, qui permettent d'encoder l'information en variables continues. Nous montrons également en quoi des opérations de variables continues peuvent aider cette génération. La méthode utilisée, basée sur la génération " d'états-noyaux " rend en outre ces états plus robustes à la décohérence. Dans une seconde partie, dans le contexte d'un réseau hétérogène, basé sur différents encodages, relier de façon quantique les deux mondes, nécessite l'existence d'intrication hybride de la lumière. Nous introduisons la notion d'intrication hybride, entre des états continus et discrets, et nous en montrons une première application qui est la génération à distance de bit quantique continu. Nous implémentons ainsi également une plateforme polyvalente permettant la génération d'états " micro-macro " intriqués.In quantum information science and technology, two traditionally-separated ways of encoding information coexist -the continuous and the discrete approaches, resulting from the wave-particle duality of light. The first one is based on quadrature components, while the second one involves single photons. The recent optical hybrid approach aims at using both discrete and continuous concepts and toolboxes to overcome the intrinsic limitations of each field. In this PhD work, first, we use hybrid protocols in order to realize the quantum state engineering of various non-Gaussian states of light. Based on optical parametric oscillators and highly-efficient superconducting-nanowire single-photon detectors, we demonstrate the realization of a high-brightness single-photon source and the quantum state engineering of large optical Schrödinger cat states, which can be used as a continuous-variable qubit. We show how continuous-variable operations such as squeezing can help in this generation. This method based on so-called core states also enables to generate cat states that are more robust to decoherence. Second, in the context of heterogeneous networks based on both encodings, bridging the two worlds by a quantum link requires hybrid entanglement of light. We introduce optical hybrid entanglement between qubits and qutrits of continuous and discrete types, and demonstrate as a first application the remote state preparation of continuous-variable qubits. Our experiment is also a versatile platform to study squeezing-induced micro-macro entanglement
Approche hybride du traitement quantique de l'information
In quantum information science and technology, two traditionally-separated ways of encoding information coexist -the continuous and the discrete approaches, resulting from the wave-particle duality of light. The first one is based on quadrature components, while the second one involves single photons. The recent optical hybrid approach aims at using both discrete and continuous concepts and toolboxes to overcome the intrinsic limitations of each field. In this PhD work, first, we use hybrid protocols in order to realize the quantum state engineering of various non-Gaussian states of light. Based on optical parametric oscillators and highly-efficient superconducting-nanowire single-photon detectors, we demonstrate the realization of a high-brightness single-photon source and the quantum state engineering of large optical Schrödinger cat states, which can be used as a continuous-variable qubit. We show how continuous-variable operations such as squeezing can help in this generation. This method based on so-called core states also enables to generate cat states that are more robust to decoherence. Second, in the context of heterogeneous networks based on both encodings, bridging the two worlds by a quantum link requires hybrid entanglement of light. We introduce optical hybrid entanglement between qubits and qutrits of continuous and discrete types, and demonstrate as a first application the remote state preparation of continuous-variable qubits. Our experiment is also a versatile platform to study squeezing-induced micro-macro entanglement.Approche hybride du traitement quantique de l'information La dualité onde-particule a conduit à deux façons d'encoder l'information quantique, les approches continues et discrètes. L'approche hybride a récemment émergé, et consiste à utiliser les concepts et boites à outils des deux approches, afin de venir à bout des limitations intrinsèques à chaque champ. Dans ce travail de thèse, nous allons dans une première partie utiliser des protocoles hybrides de façon à générer des états quantiques non-gaussiens de la lumière. A l'aide d'oscillateurs paramétriques optiques, et de détecteur de photons supraconducteurs, nous pouvons générer des photons uniques extrêmement purs très efficacement, ainsi que des états chats de Schrödinger, qui permettent d'encoder l'information en variables continues. Nous montrons également en quoi des opérations de variables continues peuvent aider cette génération. La méthode utilisée, basée sur la génération " d'états-noyaux " rend en outre ces états plus robustes à la décohérence. Dans une seconde partie, dans le contexte d'un réseau hétérogène, basé sur différents encodages, relier de façon quantique les deux mondes, nécessite l'existence d'intrication hybride de la lumière. Nous introduisons la notion d'intrication hybride, entre des états continus et discrets, et nous en montrons une première application qui est la génération à distance de bit quantique continu. Nous implémentons ainsi également une plateforme polyvalente permettant la génération d'états " micro-macro " intriqués
Chiral quantum optics in broken-symmetry and topological photonic crystal waveguides
International audienceOn-chip chiral quantum light-matter interfaces, which support directional interactions, provide a promising platform for efficient spin-photon coupling, nonreciprocal photonic elements, and quantum logic architectures. We present full-wave three-dimensional calculations to quantify the performance of conventional and topological photonic crystal waveguides as chiral emitter-photon interfaces. Specifically, the ability of these structures to support and enhance directional interactions while suppressing subsequent backscattering losses is quantified. Broken symmetry waveguides, such as the nontopological glide-plane waveguide and topological bearded interface waveguide are found to act as efficient chiral interfaces, with the topological waveguide modes allowing for operation at significantly higher Purcell enhancement factors. Finally, although all structures suffer from backscattering losses due to fabrication imperfections, these are found to be smaller at high enhancement factors for the topological waveguide. These reduced losses occur because the optical mode is pushed away from the air-dielectric interfaces where scattering occurs, and not because of any topological protection. These results are important to the understanding of light-matter interactions in topological photonic crystal and design of efficient, on-chip chiral quantum devices
Experimental Fock-state bunching capability of non-ideal single-photon states
International audienc
Engineering optical hybrid entanglement between discrete- and continuous-variable states
International audienceThe generation and manipulation of hybrid entanglement of light involving discrete-and continuous-variable states have recently appeared as essential resources towards the realization of heterogeneous quantum networks. Here we investigate a scheme for the remote generation of hybrid entanglement between particle-like and wave-like optical qubits based on a non-local heralding photon detection. We also extend this scheme with additional local or non-local detections. An additional local heralding allows the resulting state to exhibit a higher fidelity with the targeted entangled qubits while a two-photon non-local heralding detection gives access to a higher dimensionality in the discrete-variable subspace, resulting thereby in the generation of hybrid entangled qutrits. The implementation of the presented schemes, in combination with ongoing works on high-fidelity quantum state engineering, will provide novel non-classical light sources for the development of optical hybrid architectures