23 research outputs found

    Dynamics of mRNA and microRNA Expression in the Estrogen Response of Breast Cancer Cells

    Get PDF
    Cellular signaling leads to broad changes in gene expression that reprogram the cell and alter cell state. Signaling often begins with cellular receptors binding a ligand and initiating a transcriptional response. One example of this is the estrogen receptor, which binds the ligand estrogen and translocates to the nucleus where it binds to estrogen response elements and regulates the expression numerous target RNAs. The regulatory network of both messenger RNAs (mRNAs) and microRNAs (miRNAs) responding to estrogen stimulation is a complex, dynamic and multilayered program that is critical to the etiology of breast cancer. Estrogen receptor α (ERα) is an important biomarker of breast cancer severity and a common therapeutic target. Recent studies have demonstrated that in addition to its role in promoting proliferation, ERα also protects tumors against metastatic transformation. Current therapeutic strategies inhibit estrogen stimulated signaling and interfere with both beneficial and detrimental signaling pathways regulated by ERα. Additionally, ERα cyclically binds estrogen response elements and induces bursts of transcriptional activity. Together these observations suggest that ERα regulated genes and miRNAs may exhibit temporal variation in expression. Furthermore, it remains unclear if estrogen stimulated pathways exhibit the same temporal expression patterns, or if different pathways exhibit different temporal expression patterns. By combining both RNA-sequencing and small RNA-sequencing of cells responding to estrogen, we uncover the dynamics of both mRNA and miRNA expression in response to estrogen stimulation. Furthermore, we identify a regulatory circuit with potential therapeutic relevance to breast cancer that more specifically inhibits ERα-stimulated growth and survival pathways without interfering with its protective features. In response to estrogen stimulation, MCF7 cells (an estrogen receptor positive model cell line) exhibit induction of miR-503, and repression of the oncogene ZNF217. miR-503 inhibits proliferation in MCF7 cells, in part through its inhibition of the oncogene ZNF217 and the cell-cycle gene CCND1. While numerous regulatory interactions can be mined from this temporal profile of estrogen responsive mRNAs and miRNAs, the induction of the anti-proliferative microRNA, miR-503, both highlights the protective aspects of estrogen signaling and indicates that miR-503 holds promise as a therapeutic for breast cancer.Doctor of Philosoph

    Experimental design for single-cell RNA sequencing

    Get PDF
    Single-cell RNA sequencing (scRNA-seq) has opened new avenues for the characterization of heterogeneity in a large variety of cellular systems. As this is a relatively new technique, the field is fast evolving. Here, we discuss general considerations in experimental design and the two most popular approaches, plate-based Smart-Seq2 and microdroplet-based scRNA-seq at the example of 10x Chromium. We discuss advantages and disadvantages of both methods and point out major factors to consider in designing successful experiments

    An integrative transcriptomics approach identifies miR-503 as a candidate master regulator of the estrogen response in MCF-7 breast cancer cells

    Get PDF
    Estrogen receptor α (ERα) is an important biomarker of breast cancer severity and a common therapeutic target. In response to estrogen, ERα stimulates a dynamic transcriptional program including both coding and noncoding RNAs. We generate a fine-scale map of expression dynamics by performing a temporal profiling of both messenger RNAs (mRNAs) and microRNAs (miRNAs) in MCF-7 cells (an ER+ model cell line for breast cancer) in response to estrogen stimulation. We identified three primary expression trends—transient, induced, and repressed—that were each enriched for genes with distinct cellular functions. Integrative analysis of mRNA and miRNA temporal expression profiles identified miR-503 as the strongest candidate master regulator of the estrogen response, in part through suppression of ZNF217—an oncogene that is frequently amplified in cancer. We confirmed experimentally that miR-503 directly targets ZNF217 and that overexpression of miR-503 suppresses MCF-7 cell proliferation. Moreover, the levels of ZNF217 and miR-503 are associated with opposite outcomes in breast cancer patient cohorts, with high expression of ZNF217 associated with poor survival and high expression of miR-503 associated with improved survival. Overall, these data indicate that miR-503 acts as a potent estrogen-induced candidate tumor suppressor miRNA that opposes cellular proliferation and has promise as a novel therapeutic for breast cancer. More generally, our work provides a systems-level framework for identifying functional interactions that shape the temporal dynamics of gene expression

    Thematic Review Series: Functional Regulation of Lipid Homeostasis by microRNA: Complexity of microRNA function and the role of isomiRs in lipid homeostasis

    Get PDF
    MicroRNAs (miRNAs) are key posttranscriptional regulators of biological pathways that govern lipid metabolic phenotypes. Recent advances in high-throughput small RNA sequencing technology have revealed the complex and dynamic repertoire of miRNAs. Specifically, it has been demonstrated that a single genomic locus can give rise to multiple, functionally distinct miRNA isoforms (isomiR). There are several mechanisms by which isomiRs can be generated, including processing heterogeneity and posttranscriptional modifications, such as RNA editing, exonuclease-mediated nucleotide trimming, and/or nontemplated nucleotide addition (NTA). NTAs are dominant at the 3′-end of a miRNA, are most commonly uridylation or adenlyation events, and are catalyzed by one or more of several nucleotidyl transferase enzymes. 3′ NTAs can affect miRNA stability and/or activity and are physiologically regulated, whereas modifications to the 5′-ends of miRNAs likely alter miRNA targeting activity. Recent evidence also suggests that the biogenesis of specific miRNAs, or small RNAs that act as miRNAs, can occur through unconventional mechanisms that circumvent key canonical miRNA processing steps. The unveiling of miRNA diversity has significantly added to our view of the complexity of miRNA function. In this review we present the current understanding of the biological relevance of isomiRs and their potential role in regulating lipid metabolism

    Pseudogenes transcribed in breast invasive carcinoma show subtype-specific expression and ceRNA potential

    Get PDF
    BackgroundRecent studies have shown that some pseudogenes are transcribed and contribute to cancer when dysregulated. In particular, pseudogene transcripts can function as competing endogenous RNAs (ceRNAs). The high similarity of gene and pseudogene nucleotide sequence has hindered experimental investigation of these mechanisms using RNA-seq. Furthermore, previous studies of pseudogenes in breast cancer have not integrated miRNA expression data in order to perform large-scale analysis of ceRNA potential. Thus, knowledge of both pseudogene ceRNA function and the role of pseudogene expression in cancer are restricted to isolated examples.ResultsTo investigate whether transcribed pseudogenes play a pervasive regulatory role in cancer, we developed a novel bioinformatic method for measuring pseudogene transcription from RNA-seq data. We applied this method to 819 breast cancer samples from The Cancer Genome Atlas (TCGA) project. We then clustered the samples using pseudogene expression levels and integrated sample-paired pseudogene, gene and miRNA expression data with miRNA target prediction to determine whether more pseudogenes have ceRNA potential than expected by chance.ConclusionsOur analysis identifies with high confidence a set of 440 pseudogenes that are transcribed in breast cancer tissue. Of this set, 309 pseudogenes exhibit significant differential expression among breast cancer subtypes. Hierarchical clustering using only pseudogene expression levels accurately separates tumor samples from normal samples and discriminates the Basal subtype from the Luminal and Her2 subtypes. Correlation analysis shows more positively correlated pseudogene-parent gene pairs and negatively correlated pseudogene-miRNA pairs than expected by chance. Furthermore, 177 transcribed pseudogenes possess binding sites for co-expressed miRNAs that are also predicted to target their parent genes. Taken together, these results increase the catalog of putative pseudogene ceRNAs and suggest that pseudogene transcription in breast cancer may play a larger role than previously appreciated.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1227-8) contains supplementary material, which is available to authorized users

    Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells

    Get PDF
    To induce central T-cell tolerance, medullary thymic epithelial cells (mTEC) collectively express most protein-coding genes, thereby presenting an extensive library of tissue-restricted antigens (TRAs). To resolve mTEC diversity and whether promiscuous gene expression (PGE) is stochastic or coordinated, we sequenced transcriptomes of 6,894 single mTEC, enriching for 1,795 rare cells expressing either of two TRAs, TSPAN8 or GP2. Transcriptional heterogeneity allowed partitioning of mTEC into 15 reproducible subpopulations representing distinct maturational trajectories, stages and subtypes, including novel mTEC subsets, such as chemokine-expressing and ciliated TEC, which warrant further characterisation. Unexpectedly, 50 modules of genes were robustly defined each showing patterns of co-expression within individual cells, which were mainly not explicable by chromosomal location, biological pathway or tissue specificity. Further, TSPAN8+ and GP2+ mTEC were randomly dispersed within thymic medullary islands. Consequently, these data support observations that PGE exhibits ordered co-expression, although mechanisms underlying this instruction remain biologically indeterminate. Ordered co-expression and random spatial distribution of a diverse range of TRAs likely enhance their presentation and encounter with passing thymocytes, while maintaining mTEC identity

    Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum

    Get PDF
    Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells

    Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C

    Get PDF
    Persistent infections with hepatitis B virus (HBV) or hepatitis C virus (HCV) account for the majority of cases of hepatic cirrhosis and hepatocellular carcinoma (HCC) worldwide. Small, non-coding RNAs play important roles in virus-host interactions. We used high throughput sequencing to conduct an unbiased profiling of small (14-40 nts) RNAs in liver from Japanese subjects with advanced hepatitis B or C and hepatocellular carcinoma (HCC). Small RNAs derived from tRNAs, specifically 30–35 nucleotide-long 5′ tRNA-halves (5′ tRHs), were abundant in non-malignant liver and significantly increased in humans and chimpanzees with chronic viral hepatitis. 5′ tRH abundance exceeded microRNA abundance in most infected non-cancerous tissues. In contrast, in matched cancer tissue, 5′ tRH abundance was reduced, and relative abundance of individual 5′ tRHs was altered. In hepatitis B-associated HCC, 5′ tRH abundance correlated with expression of the tRNA-cleaving ribonuclease, angiogenin. These results demonstrate that tRHs are the most abundant small RNAs in chronically infected liver and that their abundance is altered in liver cancer

    Person Attribute Search For Large-Area Video Surveillance

    Get PDF
    This article appeared in Homeland Security Affairs (May 2012), supplement 5, article 1"This paper describes novel video analytics technology which allows an operator to search through large volumes of surveillance video data to find persons that match a particular attribute profile. Since the proposed technique is geared for surveillance of large areas, this profile consists of attributes that are observable at a distance (including clothing information, hair color, gender, etc.) rather than identifying information at the face level. The purpose of this tool is to allow security staff or investigators to quickly locate a person-of-interest in real time (e.g., based on witness descriptions) or to speed up the process of video-based forensic investigations. The proposed algorithm consists of two main components: a technique for detecting individual moving persons in large and potentially crowded scenes and an algorithm for scoring how well each detection matches a given attribute profile based on a generative probabilistic model. The system described in this paper has been implemented as a proof-of-concept interactive software tool and has been applied to different test video datasets, including collections in an airport terminal and collections in an outdoor environment for law enforcement monitoring. This paper discusses performance statistics measured on these datasets, as well as key algorithmic challenges and useful extensions of this work based on end-user feedback.
    corecore