47 research outputs found

    Ric-8A, a Gα Protein Guanine Nucleotide Exchange Factor Potentiates Taste Receptor Signaling

    Get PDF
    Taste receptors for sweet, bitter and umami tastants are G-protein-coupled receptors (GPCRs). While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS), RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs) are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction

    Alternative splicing of the dopamine D2 receptor directs specificity of coupling to G-proteins.

    Get PDF
    International audienceTwo isoforms of the dopamine D2 receptor have been characterized, D2L (long) and D2S (short), generated by alternative splicing from the same gene. They differ by an in-frame insert of 29 amino acids specific to D2L within the putative third intracytoplasmic loop of the receptor. We have previously demonstrated (Montmayeur, J.-P., Guiramand, J., and Borelli, E. (1993) Mol. Endocrinol. 7, 161-170) that D2S and D2L, although presenting very similar pharmacological profiles, couple differently to the alpha-subunit of guanine nucleotide-binding regulatory proteins (G-proteins). In particular, D2L, but not D2S, requires the presence of the alpha-subunit of the inhibitory G-protein (G alpha i2) to elicit greater inhibition of adenylyl cyclase activity. The insert present in D2L must therefore confer the specificity of interaction with G alpha i2. Thus, we introduced substitution mutations within the D2L insert. These mutant receptors were expressed in JEG3 cells, a G alpha i2-deficient cell line, scoring for those presenting an increased inhibition of adenylyl cyclase by dopamine. Our analysis identified two mutants, S259/262A and D249V, with these properties. These results clearly show that the insert present in D2L plays a critical role in the selectivity for the G-proteins interacting with the receptor

    Analysis of Mutant Platelet-derived Growth Factor Receptors Expressed in PC12 Cells Identifies Signals Governing Sodium Channel Induction during Neuronal Differentiation.

    Get PDF
    The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase protection assays and whole-cell patch clamp recording. However, mutation of juxtamembrane tyrosines that bind members of the Src family of kinases upon receptor activation inhibited the induction of functional Na+ channels while leaving the induction of type II alpha-subunit mRNA intact. Mutation of juxtamembrane tyrosines in combination with mutations eliminating activation of PI3K, PLC gamma, GAP, and Syp abolished the induction of type II alpha-subunit mRNA, suggesting that at least partially redundant signaling mechanisms mediate this induction. The differential effects of the receptor mutations on Na+ channel expression did not reflect global changes in receptor signaling capabilities, as in all of the mutant receptors analyzed, the induction of c-fos and transin mRNAs still occurred. The results reveal an important role for the Src family in the induction of Na+ channel expression and highlight the multiplicity and combinatorial nature of the signaling mechanisms governing neuronal differentiation

    Identification of new binding partners of the chemosensory signaling protein Gγ13 expressed in taste and olfactory sensory cells

    Get PDF
    Tastant detection in the oral cavity involves selective receptors localized at the apical extremity of a subset of specialized taste bud cells called taste receptor cells (TRCs). The identification of the genes coding for the taste receptors involved in this process have greatly improved our understanding of the molecular mechanisms underlying detection. However, how these receptors signal in TRCs, and whether the components of the signaling cascades interact with each other or are organized in complexes is mostly unexplored. Here we report on the identification of three new binding partners for the mouse G protein gamma 13 subunit (Gγ13), a component of the bitter taste receptors signaling cascade. For two of these Gγ13 associated proteins, namely GOPC and MPDZ, we describe the expression in taste bud cells for the first time. Furthermore, we demonstrate by means of a yeast two-hybrid interaction assay that the C terminal PDZ binding motif of Gγ13 interacts with selected PDZ domains in these proteins. In the case of the PDZ domain-containing protein zona occludens-1 (ZO-1), a major component of the tight junction defining the boundary between the apical and baso-lateral region of TRCs, we identified the first PDZ domain as the site of strong interaction with Gγ13. This association was further confirmed by co-immunoprecipitation experiments in HEK 293 cells. In addition, we present immunohistological data supporting partial co-localization of GOPC, MPDZ, or ZO-1, and Gγ13 in taste buds cells. Finally, we extend this observation to olfactory sensory neurons (OSNs), another type of chemosensory cells known to express both ZO-1 and Gγ13. Taken together our results implicate these new interaction partners in the sub-cellular distribution of Gγ13 in olfactory and gustatory primary sensory cells

    Human genetic polymorphisms in T1R1 and T1R3 taste receptor subunits affect their function.

    Get PDF
    International audienceUmami is the typical taste induced by monosodium glutamate (MSG), which is thought to be detected by the heterodimeric G protein-coupled receptor, T1R1 and T1R3. Previously, we showed that MSG detection thresholds differ substantially between individuals and we further showed that nontaster and hypotaster subjects are associated with nonsynonymous single polymorphisms occurring in the T1R1 and T1R3 genes. Here, we show using functional expression that both amino acid substitutions (A110V and R507Q) in the N-terminal ligand-binding domain of T1R1 and the 2 other ones (F749S and R757C), located in the transmembrane domain of T1R3, severely impair in vitro T1R1/T1R3 response to MSG. A molecular model of the ligand-binding region of T1R1/T1R3 provides a mechanistic explanation supporting functional expression data. The data presented here support causal relations between the genotype and previous in vivo psychophysical studies in human evaluating sensitivity to MSG

    Piecing together the taste signaling puzzle

    Full text link
    International audienc

    FAT/CD36: ROLE IN ORAL FATTY ACIDS DETECTION

    Full text link

    Taste receptors signalling

    Full text link
    International audienc

    Targeting of Gα i2 to the Golgi by Alternative Spliced Carboxyl-Terminal Region

    Full text link
    International audienc
    corecore