283 research outputs found

    Pilot scale biotransformation of vegetal oil into natural green note flavor using sugar beet leaves as sources of hydroperoxide lyase

    Full text link
    Natural green note aromas (GLVs) are highly attractive flavors commonly used in the food industry. These are produced in extremely low levels upon physiological stress in plant organs of any sort. This weak sporadic presence entails a very expensive extraction step to obtain pure GLVs. Therefore catalytic biotransformations of fatty acid sources, the initial substrate for GLVs, have been developed. Enzymatic defense pathways and particularly the LOX pathway produce the major part of GLVs. Unlike GLV molecules that are emitted in the atmosphere, the enzymes are extractible from the plant material. Thus, a combination of plant enzyme extracts and substrate preparations provides all the ingredients for GLV production. Besides, sugar beet leaves present high levels of hydroperoxide lyase among plant sources and are available in large amounts during three months. In this enzymatic pathway, fatty acids are successively transformed by lipase, lipoxygenase and hydroperoxide lyase into aldehydes and alcohols, final compounds of GLVs pathway. Limiting and problematic steps occur with the action of hydroperoxide lyase, when enzymatic catalysis is followed by an enzyme destabilization. Alternative substrates bind irreversibly to the heme group of the enzyme and end the reaction. This poster briefly describes the development of a complete bioprocess for natural GLV production, from hydrolysis to purification. A high level of biotransformation could be achieved using optimum experimental conditions and a cheap source of plant materials

    Chemical and enzymatical modifications of sugar derived from lignocellulose

    Full text link
    Actually, biorefinery is increasingly considered as a promising alternative to petroleum chemistry, since it aims at not only the replacement of fossil energy but also the development of chemicals from biomass, with applications such as detergents, phytopharmaceutics, solvents, plastics, etc. The valorisation of carbohydrates from renewable raw materials is currently the subject of numerous researches. In this context, the synthesis of new surfactants derived from the sugars issued from the lignocellulose hydrolysis was undertaken by chemical or enzymatic routes. In this poster, the examples of glucose, cellobiose and uronic acids will be discussed. Whatever the way used, the reaction conditions (use of a catalyst, protection/deprotection steps, type of solvent, presence of co-solvent, reactant concentrations, etc) were optimized to yield a panel of carbohydrate derivatives (some examples of the structures obtained are given above). These differ by the nature of the alkyl chain (in length and in degree of saturation), the type of chemical bond (amide, ester, thioester, acetal), and the position of substitution. The impact of these differences on the techno-functional properties of these modified sugars will be evaluated.Programme d'Excellence TECHNOS

    Development of natural semiochemical slow-release formulations as biological control devices

    Full text link
    peer reviewedSemiochemicals – informative molecules used in insect-insect or plant-insect interactions – have been widely considered within various integrated pest management (IPM) strategies. In the present work, two sesquiterpenoids, E-β-farnesene and E-β-caryophyllene, were formulated for their properties as aphid enemy attractants. E-β-farnesene, the alarm pheromone of many aphid species, was also identified as a kairomone by attracting aphid predators and parasitoids. E-β-caryophyllene was identified as a potential component of the aggregation pheromone of the Asian ladybird, Harmonia axyridis Pallas, another aphid predator. The two products were purified from essential oils of Matricaria chamomilla L. (Asteraceae) and Nepeta cataria L. (Lamiaceae), respectively. Natural and biodegradable formulations were then investigated in order to deliver these molecules on crop fields for a long period of time as biological control devices. Due to their sensitivity to oxidation, both sesquiterpenes needed to be protected from oxygen degradation. For this purpose, alginate – hydrophilic matrix with low oxygen permeability – was used as polymer for the formulations: the main objective was to deliver semiochemicals in the air in a controlled way. Consequently, a careful selection of alginates was realised. Formulated beads showed different structural and encapsulation properties depending on various formulation factors. Alginate formulations were characterised by texturometry and by confocal microscopy in order to observe the distribution of semiochemicals in alginate network. The last step of alginate bead characterisation consisted in studying release rate of semiochemicals in laboratory-controlled conditions by optimised volatile collection system and validated fast GC analytical procedures Finally, the efficiency of formulations as aphid predator (Syrphidae species) and parasitoid (Aphidius ervi) attractants was demonstrated by field trapping and olfactometry experiments.SOLAPHI

    Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato

    Full text link
    The rhizobacterium Pseudomonas putida BTP1 stimulates induced systemic resistance (ISR) in tomato. A previous work showed that the resistance is associated in leaves with the induction of the first enzyme of the oxylipin pathway, the lipoxygenase (LOX), leading to a faster accumulation of its product, the free 13-hydroperoxy octadecatrienoic acid (13-HPOT), 2 days after Botrytis cinerea inoculation. In the present study, we further investigated the stimulation of the oxylipin pathway: metabolites and enzymes of the pathway were analyzed to understand the fate of the 13-HPOT in ISR. Actually the stimulation began upstream the LOX: free linolenic acid accumulated faster in P. putida BTP1-treated plants than in control. Downstream, the LOX products 13-fatty acid hydroperoxides esterified to galactolipids and phospholipids were more abundant in bacterized plants than in control before infection. These metabolites could constitute a pool that will be used after pathogen attack to produce free fungitoxic metabolites through the action of phospholipase A2, which is enhanced in bacterized plants upon infection. Enzymatic branches which can use as substrate the fatty acid hydroperoxides were differentially regulated in bacterized plants in comparison to control plants, so as to lead to the accumulation of the most fungitoxic compounds against B. cinerea. Our study, which is the first to demonstrate the accumulation of an esterified defense metabolite during rhizobacteria-mediated induced systemic resistance, showed that the oxylipin pathway is differentially regulated. It suggests that this allows the plant to prepare to a future infection, and to respond faster and in a more effective way to B. cinerea invasion.Peer reviewe
    • …
    corecore