45 research outputs found
Sex in basic research – Concepts in the cardiovascular field
Women and men, female and male animals and cells are biologically different, and acknowledgement of
this fact is critical to advancing medicine. However, incorporating concepts of sex-specific
analysis in basic research is largely neglected, introducing bias into translational findings, clinical concepts and drug
development.Research funding agencies recently approached these issues but implementation of policy
changes in the scientific community is still limited probably due to deficits in concepts, knowledge and proper methodology. This expert review is based on the EUGenMed project (www.eugenmed.eu) developing a roadmap for implementing sex and gender in biomedical and health research. For sake of clarity and conciseness, examples are mainly taken from the cardiovascular field that may serve as a paradigm for others, since a significant amount of knowledge how sex and estrogen determine the manifestation of many
cardiovascular diseases (CVD) has been accumulated. As main concepts for implementation of sex in
basic research, the study of primary cell and animals of both sexes, the study of the influence of genetic
versus hormonal factors and the analysis of sex chromosomes and sex specific statistics in genome wide
association studies (GWAS) are discussed. The review also discusses methodological issues, and analyses
strength, weaknesses, opportunities and threats in implementing sex-sensitive aspects into basic
research
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Hormones endogènes et exogènes
International audienceBefore menopause, women are protected from the risk of hypertension and atherosclerosis by endogenous estrogens. Estrogens have a vasoprotective role, while progesterone seems to have a neutral effect. Exogenous estrogens used in menopausal treatment have vascular effects. These effects depend of type, dose and administration type, and with age and atherosclerosis stages. Synthetic progestins have varying clinical effects. Each drug must be evaluated separately
Interference of progestins with endothelial actions of estrogens: a matter of glucocorticoid action or deprivation?
International audienc
Sustained Increase in Aortic Endothelial Nitric Oxide Synthase Expression In Vivo in a Model of Chronic High Blood Flow
International audience Physiological adaptation of normal blood vessels to acute or chronic changes in blood flow is endothelium dependent. In vitro studies have shown that, among other genes, NO synthase (NOS) 3 mRNA and protein expression is enhanced by acute elevation of shear stress in endothelial cells. We have investigated the effect of chronic high blood flow on NOS3 mRNA and protein expression in rat aorta. NOS3 mRNA levels were measured by quantitative polymerase chain reaction (PCR) in the aortas of 12 rats with arteriovenous fistulas and 9 sham-operated control rats. The PCR assay indicated that NOS3 mRNA levels were significantly enhanced (twofold) during high blood flow. Western blots showed that immunoreactive NOS3 levels were also increased to a similar extent. Furthermore, the Ca 2+ -dependent NOS activity, measured by the l -arginine to l -citrulline conversion assay, and the cGMP content were also significantly increased in the proximal aortic wall submitted to the arteriovenous shunt. These results indicate that NOS3 mRNA and protein expression is enhanced in vivo during chronic high blood flow. </jats:p
Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications
Bone is a multi-skilled tissue, protecting major organs, regulating calcium phosphate balance and producing hormones. Its development during childhood determines height and stature as well as resistance against fracture in advanced age. Estrogens are key regulators of bone turnover in both females and males. These hormones play a major role in longitudinal and width growth throughout puberty as well as in the regulation of bone turnover. In women, estrogen deficiency is one of the major causes of postmenopausal osteoporosis. In this review, we will summarize the main clinical and experimental studies reporting the effects of estrogens not only in females but also in males, during different life stages. Effects of estrogens on bone involve either Estrogen Receptor (ER)α or ERβ depending on the type of bone (femur, vertebrae, tibia, mandible), the compartment (trabecular or cortical), cell types involved (osteoclasts, osteoblasts and osteocytes) and sex. Finally, we will discuss new ongoing strategies to increase the benefit/risk ratio of the hormonal treatment of menopause
Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications
Bone is a multi-skilled tissue, protecting major organs, regulating calcium phosphate balance and producing hormones. Its development during childhood determines height and stature as well as resistance against fracture in advanced age. Estrogens are key regulators of bone turnover in both females and males. These hormones play a major role in longitudinal and width growth throughout puberty as well as in the regulation of bone turnover. In women, estrogen deficiency is one of the major causes of postmenopausal osteoporosis. In this review, we will summarize the main clinical and experimental studies reporting the effects of estrogens not only in females but also in males, during different life stages. Effects of estrogens on bone involve either Estrogen Receptor (ER)α or ERβ depending on the type of bone (femur, vertebrae, tibia, mandible), the compartment (trabecular or cortical), cell types involved (osteoclasts, osteoblasts and osteocytes) and sex. Finally, we will discuss new ongoing strategies to increase the benefit/risk ratio of the hormonal treatment of menopause
Deficiency of mature B cells does not alter the atherogenic response to castration in male mice
Testosterone deficiency in men is associated with increased atherosclerosis burden and increased cardiovascular risk. In male mice, testosterone deficiency induced by castration increases atherosclerosis as well as mature B cell numbers in spleen. As B cells are potentially pro-atherogenic, we hypothesized that there may be a link between these effects. To address whether mature B cell deficiency alter the atherogenic response to castration, we studied B cell-deficient μMT and genotype control male mice on an atherosclerosis-prone Apoe(−/−) background that were castrated or sham-operated pre-pubertally and fed a high-fat diet between 8 and 16 weeks of age to accelerate atherosclerosis development. Genotype did not affect the effects of castration on body weight or weights of fat depots and there were no differences in serum cholesterol levels across the four groups. Atherosclerosis assessed by quantification of lesion area in serial sections of the aortic root was significantly increased by castration and by the μMT mutation, with no significant interaction between genotype and surgery. In conclusion, castration evokes a similar atherogenic response in B cell-deficient μMT and control mice. These data suggest that atherogenesis following castration is unrelated to the effects of androgens on mature B cell numbers
The transcriptional activities and cellular localization of the human estrogen receptor alpha are affected by the synonymous Ala87 mutation.
International audience: Until recently, synonymous mutations (which do not change amino acids) have been much neglected. Some evidence suggests that this kind of mutations could affect mRNA secondary structure or stability, translation kinetics and protein structure. To explore deeper the role of synonymous mutations, we studied their consequence on the functional activity of the estrogen receptor alpha (ERα). The ERα is a ligand-inducible transcription factor that orchestrates pleiotropic cellular effects, at both genomic and non-genomic levels in response to estrogens. In this work we analyzed in transient transfection experiments, the activity of ERα carrying the synonymous mutation Ala87, a polymorphism involving about 5-10% of the population. In comparison to the wild type receptor, our results show that ERαA87 mutation reduces the transactivation efficiency of ERα on an ERE reporter gene while its expression level remains similar. This mutation enhances 4-OHT-induced transactivation of ERα on an AP1 reporter gene. Finally, the mutation affects the subcellular localization of ERα in a cell type specific manner. It enhances the cytoplasmic location of ERα without significant changes in non-genomic effects of E2. The functional alteration of the ERαA87 determined in this work highlights the relevance of synonymous mutations for biomedical and pharmacological points of view