4 research outputs found
Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer
The main challenge for gas storage and separation in nanoporous materials is that many molecules of interest adsorb too weakly to be effectively retained. Instead of synthetically modifying the internal surface structure of the entire bulk—as is typically done to enhance adsorption—here we show that post exposure of a prototypical porous metal-organic framework to ethylenediamine can effectively retain a variety of weakly adsorbing molecules (for example, CO, CO₂, SO₂, C₂H₂, NO) inside the materials by forming a monolayer-thick cap at the external surface of microcrystals. Furthermore, this capping mechanism, based on hydrogen bonding as explained by ab initio modelling, opens the door for potential selectivity. For example, water molecules are shown to disrupt the hydrogen-bonded amine network and diffuse through the cap without hindrance and fully displace/release the retained small molecules out of the metal-organic framework at room temperature. These findings may provide alternative strategies for gas storage, delivery and separation
Role of Alumina Coatings for Selective and Controlled Bonding of DNA on Technologically Relevant Oxide Surfaces
International audienceDNA immobilization on surfaces is crucial to a number of applications. However, detailed understanding of DNA/surface chemistry remains poorly documented, especially on oxide surfaces, due to the complexity of such large molecules. This work focuses on a simpler molecule, 2-deoxythymidine-5-monophosphate (dTMP), which contains all the chemical elements of DNA. It confirms that adsorption of dTMP onto OH-terminated SiO2 surfaces does not result in a chemical bond (dTMP readily washes off) and instead shows that dTMP chemically adsorbs on Al2O3 surfaces. We combine first-principles calculations, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy to determine the bonding configuration of dTMP onto alumina surfaces controllably grown by atomic layer deposition. We demonstrate that dTMP covalently reacts with alumina. Calculations indicate that covalent bonding of all dTMP polar groups (sugar ring, phosphate group, and thymine) is thermodynamically favored. Spectroscopic data and theory-based assignments of vibrational modes show that the bonding takes place primarily through both the thymine and phosphate groups. The reactivity and the tendency for dTMP to lie flat on the surface lead to an irreversible and disorganized dTMP layering. Studies of dTMP adsorption as a function of Al2O3 thickness show that the density of grafted dTMP can be controlled, with measurable amounts even above the Al2O3 monolayer coverage. These findings provide technological directions for DNA-based nanotechnologies to graft DNA on surfaces that would otherwise be unreactive
Study of Atomic Hydrogen Concentration in Grain Boundaries of Polycrystalline Diamond Thin Films
This paper describes research focused on investigating the effect of hydrogen (H) atom insertion into the grain boundaries of polycrystalline diamond (PCD) films. This is required in order to understand the key morphological, chemical, physical, and electronic properties of the films. The PCD films were grown using the hot filament chemical vapor deposition (HFCVD) process, with flowing Ar gas mixed with CH4 and H2 gases to control film growth into microcrystalline diamond (MCD, 0.5–3 µm grain sizes), nanocrystalline diamond (NCD, 10–500 nm grain sizes), and ultrananocrystalline diamond (UNCD, 2–5 nm grain sizes) films depending on the Ar/CH4/H2 flow ratios. This study focused on measuring the H atom concentration of the PCD films to determine the effect on the properties indicated above. A simple model is presented, including a hypothesis that the two dangling bonds per unit cell of C atoms serve as the site of hydrogen incorporation. This correlates well with the observed concentration of H atoms in the films. Dangling bonds which are not passivated by hydrogen are postulated to form surface structures which include C double bonds. The Raman peak from these surface structures are the same as observed for transpolyacetyline (TPA). The data reveal that the concentration of H atoms at the grain boundaries is around 1.5 × 1015 atoms/cm2 regardless of grain size. Electrical current measurements, using a conductive atomic force microscopy (CAFM) technique, were performed using an MCD film, showing that the current is concentrated at the grain boundaries. Ultraviolet photo electron spectroscopy (UPS) confirmed that all the PCD films exhibited a metallic behavior. This is to be expected if the nature of grain boundaries is the same regardless of grain size