17,745 research outputs found

    Mean-field scenario for the athermal creep dynamics of yield-stress fluids

    Full text link
    We develop an elasto-plastic description for the transient dynamics prior to steady flow of athermally yielding materials. Our mean-field model not only reproduces the experimentally observed non-linear time dependence of the shear-rate response to an external shear-stress, but also allows for the determination of the different physical processes involved in the onset of the re-acceleration phase after the initial critical slowing down and a distinct well defined fluidization phase. The evidenced power-law dependence of the fluidization time on the distance of the applied to an age dependent static yield stress is not universal but strongly dependent on initial conditions.Comment: 8 pages, 4 figure

    A Novel Data-Aided Channel Estimation with Reduced Complexity for TDS-OFDM Systems

    Get PDF
    In contrast to the classical cyclic prefix (CP)-OFDM, the time domain synchronous (TDS)-OFDM employs a known pseudo noise (PN) sequence as guard interval (GI). Conventional channel estimation methods for TDS-OFDM are based on the exploitation of the PN sequence and consequently suffer from intersymbol interference (ISI). This paper proposes a novel dataaided channel estimation method which combines the channel estimates obtained from the PN sequence and, most importantly, additional channel estimates extracted from OFDM data symbols. Data-aided channel estimation is carried out using the rebuilt OFDM data symbols as virtual training sequences. In contrast to the classical turbo channel estimation, interleaving and decoding functions are not included in the feedback loop when rebuilding OFDM data symbols thereby reducing the complexity. Several improved techniques are proposed to refine the data-aided channel estimates, namely one-dimensional (1-D)/two-dimensional (2-D) moving average and Wiener filtering. Finally, the MMSE criteria is used to obtain the best combination results and an iterative process is proposed to progressively refine the estimation. Both MSE and BER simulations using specifications of the DTMB system are carried out to prove the effectiveness of the proposed algorithm even in very harsh channel conditions such as in the single frequency network (SFN) case

    A Fast Decodable Full-Rate STBC with High Coding Gain for 4x2 MIMO Systems

    Get PDF
    In this work, a new fast-decodable space-time block code (STBC) is proposed. The code is full-rate and full-diversity for 4x2 multiple-input multiple-output (MIMO) transmission. Due to the unique structure of the codeword, the proposed code requires a much lower computational complexity to provide maximum-likelihood (ML) decoding performance. It is shown that the ML decoding complexity is only O(M^{4.5}) when M-ary square QAM constellation is used. Finally, the proposed code has highest minimum determinant among the fast-decodable STBCs known in the literature. Simulation results prove that the proposed code provides the best bit error rate (BER) performance among the state-of-the-art STBCs.Comment: 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London : United Kingdom (2013

    Easy orientation of diblock copolymers on self-assembled monolayers using UV irradiation

    Full text link
    A simple method based on UV/ozone treatment is proposed to control the surface energy of dense grafted silane layers for orientating block copolymer mesophases. Our method allows one to tune the surface energy down to a fraction of a mN/m. We show that related to the surface, perpendicular orientation of a lamellar phase of a PS-PMMA diblock copolymer (neutral surface) is obtained for a critical surface energy of 23.9-25.7 mN/m. Perpendicular cylinders are obtained for 24.6 mN/m and parallel cylinders for 26.8 mN/m.Comment: 3 figures, 1 tabl
    corecore