68 research outputs found
Etude des propriétés des pins de plantation du territoire de Wallis et Futuna
L'objectif finalisé du projet est de fournir des informations pertinentes sur les possibilités et les conditions de valorisation des puis de plantation de Wallis et Futun
Frontières linguistiques et communautés de travail
L’analyse concerne différents types de limites et frontières au sein d’une grande entreprise automobile située près de la frontière franco-allemande en Moselle (France). Filiale d’un grand groupe allemand, dirigée par un Allemand, mais employant une majorité de Français et une minorité d’Allemands, cette entreprise est un lieu original de brouillage des frontières. Les distinctions liées aux groupes sociaux, à l’organisation du travail et à des cultures d’entreprises, tendent à se superposer de manière subtile et à moduler les effets de frontières nationales et linguistiques. Toutefois, les évolutions de la production, du recrutement des salariés et la mise en place de nouveaux partenariats industriels sont susceptibles d’activer ces frontières apparemment routinisées et fonctionnelles. L’article présente les questionnements théoriques, la méthodologie et les premiers enseignements de la pré-enquête.This paper focuses on a plant in the automotive industry located in the Moselle department (France) close to the French-German border, which is an organisation encompassing several types of limits and borders. As the employees are mainly of French nationality but also, to a lesser extent, of German nationality , and the managing director is German, the company is a place where the national, social and linguistic borders meet and combine to form new structures. The authors aim at identifying the respective roles of these types of borders within the company, especially in terms of the eventual superposition of the limits between high-skilled employees vs. workers, German-speaking vs. French-speaking, as well as German vs. French nationals. The representation of these limits will be put in the territorial perspective of the factory environment through the places from where the employees originate
A mesofluidic multiplex immunosensor for detection of circulating cytokeratin-positive cells in the blood of breast cancer patients
We have recently reported the analytical performance of an immunosensor comprising one mm-scale parallel plate laminar flow chamber and applied to capture MCF7 breast cancer cells (Ehrhart et al., Biosens. Bioelectr. 24, 467, 2008). Herein we present a new multiplex immunosensor embodying four parallel plate laminar flow chambers that fit onto a standard, functionalized, microscopy glass slide. The four surfaces are coated with long alkyl chain spacers of 21-aminohenicosyl trichlorosilane (AHTS) and then grafted with a monoclonal anti-human epithelial cell adhesion molecule (EpCAM) antibody specific of target cells to immobilize. We first demonstrate a significantly (P < 0.01) improved capacity of each of the four flow chambers of the multiplex immunosensor to capture MCF7 cells compared to the previous single chamber device. Second, in addition to an increase of cell immobilization, the multiplex device offers a versatile tool easily grafted with various purified antibodies onto the four surfaces. Third, we obtained high cell capture rate and efficiency of various numbers of MCF7 cells spiked in buffer containing an equal number of background leukocytes. And fourth, we demonstrate isolation efficiency of circulating tumor cells (CTCs) from peripheral blood drawn from a small cohort of patients with localized or metastatic breast cancer. This new multiplex immunosensor could be tested for its potential to capture different subpopulations of CTCs
Aldo Keto Reductase 1B7 and Prostaglandin F2α Are Regulators of Adrenal Endocrine Functions
Prostaglandin F2α (PGF2α), represses ovarian steroidogenesis and initiates parturition in mammals but its impact on adrenal gland is unknown. Prostaglandins biosynthesis depends on the sequential action of upstream cyclooxygenases (COX) and terminal synthases but no PGF2α synthases (PGFS) were functionally identified in mammalian cells. In vitro, the most efficient mammalian PGFS belong to aldo-keto reductase 1B (AKR1B) family. The adrenal gland is a major site of AKR1B expression in both human (AKR1B1) and mouse (AKR1B3, AKR1B7). Thus, we examined the PGF2α biosynthetic pathway and its functional impact on both cortical and medullary zones. Both compartments produced PGF2α but expressed different biosynthetic isozymes. In chromaffin cells, PGF2α secretion appeared constitutive and correlated to continuous expression of COX1 and AKR1B3. In steroidogenic cells, PGF2α secretion was stimulated by adrenocorticotropic hormone (ACTH) and correlated to ACTH-responsiveness of both COX2 and AKR1B7/B1. The pivotal role of AKR1B7 in ACTH-induced PGF2α release and functional coupling with COX2 was demonstrated using over- and down-expression in cell lines. PGF2α receptor was only detected in chromaffin cells, making medulla the primary target of PGF2α action. By comparing PGF2α-responsiveness of isolated cells and whole adrenal cultures, we demonstrated that PGF2α repressed glucocorticoid secretion by an indirect mechanism involving a decrease in catecholamine release which in turn decreased adrenal steroidogenesis. PGF2α may be regarded as a negative autocrine/paracrine regulator within a novel intra-adrenal feedback loop. The coordinated cell-specific regulation of COX2 and AKR1B7 ensures the generation of this stress-induced corticostatic signal
Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches
Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing.
Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.
Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19.
Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.Peer Reviewe
COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms.
Funder: Bundesministerium für Bildung und ForschungFunder: Bundesministerium für Bildung und Forschung (BMBF)We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective
Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches
IntroductionThe COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. MethodsExtensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.ResultsResults revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. DiscussionThe key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies
- …