25 research outputs found

    Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs

    Get PDF
    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered

    Maternal characteristics associated with the dietary intake of nitrates, nitrites, and nitrosamines in women of child-bearing age: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple <it>N</it>-nitroso compounds have been observed in animal studies to be both mutagenic and teratogenic. Human exposure to <it>N</it>-nitroso compounds and their precursors, nitrates and nitrites, can occur through exogenous sources, such as diet, drinking water, occupation, or environmental exposures, and through endogenous exposures resulting from the formation of <it>N</it>-nitroso compounds in the body. Very little information is available on intake of nitrates, nitrites, and nitrosamines and factors related to increased consumption of these compounds.</p> <p>Methods</p> <p>Using survey and dietary intake information from control women (with deliveries of live births without major congenital malformations during 1997-2004) who participated in the National Birth Defects Prevention Study (NBDPS), we examined the relation between various maternal characteristics and intake of nitrates, nitrites, and nitrosamines from dietary sources. Estimated intake of these compounds was obtained from the Willet Food Frequency Questionnaire as adapted for the NBDPS. Multinomial logistic regression models were used to estimate odds ratios and 95% confidence intervals for the consumption of these compounds by self-reported race/ethnicity and other maternal characteristics.</p> <p>Results</p> <p>Median intake per day for nitrates, nitrites, total nitrites (nitrites + 5% nitrates), and nitrosamines was estimated at 40.48 mg, 1.53 mg, 3.69 mg, and 0.472 μg respectively. With the lowest quartile of intake as the referent category and controlling for daily caloric intake, factors predicting intake of these compounds included maternal race/ethnicity, education, body mass index, household income, area of residence, folate intake, and percent of daily calories from dietary fat. Non-Hispanic White participants were less likely to consume nitrates, nitrites, and total nitrites per day, but more likely to consume dietary nitrosamines than other participants that participated in the NBDPS. Primary food sources of these compounds also varied by maternal race/ethnicity.</p> <p>Conclusions</p> <p>Results of this study indicate that intake of nitrates, nitrites, and nitrosamines vary considerably by race/ethnicity, education, body mass index, and other characteristics. Further research is needed regarding how consumption of foods high in nitrosamines and <it>N</it>-nitroso precursors might relate to risk of adverse pregnancy outcomes and chronic diseases.</p

    Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the short willet food frequency questionnaire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance.</p> <p>Methods</p> <p>We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ) as adapted for use in the National Birth Defects Prevention Study. Multiple reference databases were searched for published literature reflecting nitrate, nitrite, and nitrosamine values in foods. Relevant published literature was reviewed; only publications reporting results for items listed on the WFFQ were selected for inclusion. The references selected were prioritized according to relevance to the U.S. population.</p> <p>Results</p> <p>Based on our estimates, vegetable products contain the highest levels of nitrate, contributing as much as 189 mg/serving. Meat and bean products contain the highest levels of nitrites with values up to 1.84 mg/serving. Alcohol, meat and dairy products contain the highest values of nitrosamines with a maximum value of 0.531 μg/serving. The estimates of dietary nitrates, nitrites, and nitrosamines generated in this study are based on the published values currently available.</p> <p>Conclusion</p> <p>To our knowledge, these are the only estimates specifically designed for use with the adapted WFFQ and generated to represent food items available to the U.S. population. The estimates provided may be useful in other research studies, specifically in those exploring the relation between exposure to these compounds in foods and adverse health outcomes.</p

    Validity of parental work information on the birth certificate

    No full text
    Abstract Background In the most recent revision (2003) of the U.S. standard certificate of live births, the National Center for Health Statistics recommended that all states collect maternal and paternal usual occupation. Because such information might be useful in the surveillance of job-related risk areas, we assessed the quality of parental work information on the U.S. birth certificate. Methods Occupational histories obtained from maternal interviews with Texas (USA) participants in the National Birth Defects Prevention Study were linked to and compared with parental work information on birth certificates. With occupational information from interviews serving as the gold standard, we assessed the quality of occupational information on the birth certificate with measures of sensitivity, specificity, and the kappa statistic. Results Of the 649 births available for study, parental occupation agreed between the birth certificate and interview for 77% of mothers and 63% of fathers with similar agreement by case-control status. Among occupations and industries with 10 or more workers by interview, sensitivity of the birth certificate information ranged from 35% to 100% for occupational groups and 55% to 100% for industrial sectors. Specificities of occupations/industries studied ranged from 93 to 100%. Kappa statistics for maternal occupations (0.76 to 0.90) and industries (0.59 to 0.94) were higher than those for paternal occupations (0.48 to 0.92) and industries (0.47 to 0.89). Mothers were frequently misclassified as homemakers or otherwise unemployed while the paternal information was often missing altogether on the birth certificate. Women who worked as health diagnosing and treating practitioners were the least likely (0%) and women in food preparation or serving occupations were the most likely (65%) to be misclassified as not employed on the birth certificate. Among fathers, the proportion of missing occupations was the lowest for occupations in business or financial operations (0%) and highest for occupations in food preparation and serving (30%). Conclusion Sensitivity of occupation/industry information on birth certificates varies although the specificity of such information may exceed 95%. Quality of this information also varies by maternal and paternal occupation with misclassification as homemaker a limiting factor among maternal and missing information a limiting factor among paternal work information.</p
    corecore