107 research outputs found
A rule-based kinetic model of RNA polymerase II C-terminal domain phosphorylation
The complexity ofmany RNA processing pathways is such that a conventional systemsmodelling approach is inadequate to represent all themolecular species involved. We demonstrate that rule-based modelling permits a detailed model of a complex RNA signalling pathway to be defined. Phosphorylation of the RNApolymerase II (RNAPII)C-terminal domain (CTD; a flexible tail-like extension of the largest subunit) couples pre-messenger RNA capping, splicing and 30 end maturation to transcriptional elongation and termination, and plays a central role in integrating these processes. The phosphorylation states of the serine residues of many heptapeptide repeats of the CTD alter along the coding region of genes as a function of distance from the promoter. From a mechanistic perspective, both the changes in phosphorylation and the location atwhich they take place on the genes are a function of the time spent byRNAPII in elongation as this interval provides the opportunity for the kinases and phosphatases to interactwith theCTD.On this basis,we synthesize the available data to create a kinetic model of the action of the known kinases and phosphatases to resolve the phosphorylation pathways and their kinetics.</p
Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning
Brr2p is one of eight RNA helicases involved in pre-mRNA splicing. Detailed understanding of the functions of Brr2p and other spliceosomal helicases has been limited by lack of knowledge of their in vivo substrates. To address this, sites of direct Brr2p–RNA interaction were identified by in vivo UV cross-linking in budding yeast. Cross-links identified in the U4 and U6 small nuclear RNAs (snRNAs) suggest U4/U6 stem I as a Brr2p substrate during spliceosome activation. Further Brr2p cross-links were identified in loop 1 of the U5 snRNA and near splice sites and 3′ ends of introns, suggesting the possibility of a previously uncharacterized function for Brr2p in the catalytic center of the spliceosome. Consistent with this, mutant brr2-G858R reduced second-step splicing efficiency and enhanced cross-linking to 3′ ends of introns. Furthermore, RNA sequencing indicated preferential inhibition of splicing of introns with structured 3′ ends. The Brr2-G858Rp cross-linking pattern in U6 was consistent with an open conformation for the catalytic center of the spliceosome during first-to-second-step transition. We propose a previously unsuspected function for Brr2p in driving conformational rearrangements that lead to competence for the second step of splicing
Interaction of yeast eIF4G with spliceosome components Implications in pre-mRNA processing events
International audienceAs evidenced from mammalian cells the eukaryotic translation initiation factor eIF4G has a putative role in nuclear RNA metabolism. Here we investigate whether this role is conserved in the yeast Saccharomyces cerevisiae. Using a combination of in vitro and in vivo methods, we show that, similar to mammalian eIF4G, yeast eIF4G homologues, Tif4631p and Tif4632p, are present both in the nucleus and the cytoplasm. We show that both eIF4G proteins interact efficiently in vitro with UsnRNP components of the splicing machinery. More specifically, Tif4631p and Tif4632p interact efficiently with U1 snRNA in vitro. In addition, Tif4631p and Tif4632p associate with protein components of the splicing machinery, namely Snu71p and Prp11p. To further delineate these interactions, we map the regions of Tif4631p and Tif4632p that are important for the interaction with Prp11p and Snu71p and we show that addition of these regions to splicing reactions in vitro has a dominant inhibitory effect. The observed interactions implicate eIF4G in aspects of pre-mRNA processing. In support of this hypothesis, deletion of one of the eIF4G isoforms results in accumulation of un-spliced precursors for a number of endogenous genes, in vivo. In conclusion these observations are suggestive of the involvement of yeast eIF4G in pre-mRNA metabolism
Processivity and Coupling in Messenger RNA Transcription
The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model.In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range.We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low--as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise--a prediction of the on/off model that has no supporting evidence
Mutagenesis of Snu114 domain IV identifies a developmental role in meiotic splicing
<p>Snu114, a component of the U5 snRNP, plays a key role in activation of the spliceosome. It controls the action of Brr2, an RNA-stimulated ATPase/RNA helicase that disrupts U4/U6 snRNA base-pairing prior to formation of the spliceosome’s catalytic centre. Snu114 has a highly conserved domain structure that resembles that of the GTPase EF-2/EF-G in the ribosome. It has been suggested that the regulatory function of Snu114 in activation of the spliceosome is mediated by its C-terminal region, however, there has been only limited characterisation of the interactions of the C-terminal domains. We show a direct interaction between protein phosphatase PP1 and Snu114 domain ‘IVa’ and identify sequence ‘YGVQYK’ as a PP1 binding motif. Interestingly, this motif is also required for Cwc21 binding. We provide evidence for mutually exclusive interaction of Cwc21 and PP1 with Snu114 and show that the affinity of Cwc21 and PP1 for Snu114 is influenced by the different nucleotide-bound states of Snu114. Moreover, we identify a novel mutation in domain IVa that, while not affecting vegetative growth of yeast cells, causes a defect in splicing transcripts of the meiotic genes, <i>SPO22, AMA1</i> and <i>MER2</i>, thereby inhibiting an early stage of meiosis.</p
Yeast Sm-like proteins function in mRNA decapping and decay
One of the main mechanisms of messenger RNA degradation in eukaryotes occurs by deadenylation-dependent decapping which leads to 5'-to-3' decay1, 2. A family of Sm-like (Lsm) proteins has been identified, members of which contain the 'Sm' sequence motif, form a complex with U6 small nuclear RNA and are required for pre-mRNA splicing3-9. Here we show that mutations in seven yeast Lsm proteins (Lsm1–Lsm7) also lead to inhibition of mRNA decapping. In addition, the Lsm1–Lsm7 proteins co-immunoprecipitate with the mRNA decapping enzyme (Dcp1), a decapping activator (Pat1/Mrt1) and with mRNA. This indicates that the Lsm proteins may promote decapping by interactions with the mRNA and the decapping machinery. In addition, the Lsm complex that functions in mRNA decay appears to be distinct from the U6-associated Lsm complex, indicating that Lsm proteins form specific complexes that affect different aspects of mRNA metabolism
- …