4 research outputs found

    Photoprotective Effect of Fermented and Aged Mountain-Cultivated Ginseng Sprout (<i>Panax ginseng</i>) on Ultraviolet Radiation-Induced Skin Aging in a Hairless Mouse Model

    No full text
    Interest in foods that promote inner beauty increases with increases in exposure to ultraviolet (UV) rays and with improvements in quality of life. This study was performed to evaluate the efficacy of fermented and aged mountain-cultivated ginseng sprouts (FAMCGSs), which have higher anti-inflammatory and antioxidant effects compared to mountain-cultivated ginseng sprouts (MCGSs), as an inner beauty enhancing food. The effect of orally administered FAMCGSs on UV type B (UVB) radiation-induced skin aging was investigated in a hairless mouse model through analyzing skin parameters including epidermal thickness, transepidermal water loss (TEWL), roughness, moisture, elasticity, and collagen contents. The mice exposed to UVB had markedly greater epidermal thickness, TEWL, and skin roughness than those of the normal control (NC) group. In addition, the levels of collagen, skin moisture, and dermal elasticity were lower in the UVB radiation group than the NC group. These UVB-induced skin aging parameters were significantly lower in the groups administered FAMCGSs than in the groups not administered FAMCGSs (p < 0.05). These results show that FAMCGSs exhibit a photoprotective effect in mice exposed to UVB and suggest that FAMCGSs can be used as a food that promotes inner beauty and protects skin from UVB-induced photoaging

    Changes in Chemical Compositions and Antioxidant Activities from Fresh to Fermented Red Mountain-Cultivated Ginseng

    No full text
    This study investigated changes in nutrients (fatty acids, amino acids, and minerals), ginsenosides, and volatile flavors, and antioxidant activities during food processing of mountain-cultivated ginseng (MCG) with the cocktail lactic acid bacteria. Fatty acid content increased, but the free amino acid content decreased, and minerals were practically unaffected during processing. Total phenolic and flavonoid contents and maillard reaction products increased markedly according to processing stage. The total ginsenosides levels increased from 31.25 mg/g (DMCG) to 32.36 mg/g (red MCG, RMCG) and then decreased (27.27 mg/g, at fermented RMCG) during processing. Particularly, the contents of F2 (0.31 &rarr; 1.02 &rarr; 2.27 mg/g), Rg3 (0.36 &rarr; 0.77 &rarr; 1.93 mg/g), and compound K (0.5 &rarr; 1.68 &rarr; 4.13 mg/g) of ginsenosides and &beta;-panasinsene (17.28 &rarr; 22.69 &rarr; 31.61%), biocycloelemene (0.11 &rarr; 0.84 &rarr; 0.92%), &delta;-cadinene (0.39 &rarr; 0.5 &rarr; 0.94%), and alloaromadendrene (1.64 &rarr; 1.39 &rarr; 2.6%) of volatile flavor compounds increased during processing, along with to the antioxidant effects (such as DPPH, ABTS, and hydroxyl radical scavenging activities, and FRAP). This study may provide several choices for the use of ginseng in functional foods and functional cosmetics

    Comparisons of Physicochemical Properties, Bacterial Diversities, Isoflavone Profiles and Antioxidant Activities on Household and Commercial <i>doenjang</i>

    No full text
    In this study, the physicochemical properties (pH, acidity, salinity, and soluble protein), bacterial diversities, isoflavone contents, and antioxidant activities of doenjang (fermented soy paste), household doenjang (HDJ), and commercial doenjang (CDJ), were assessed and compared. The values of pH 5.14–5.94 and acidity 1.36–3.03%, indicated a similar level in all doenjang. The salinity was high in CDJ at 12.8–14.6%, and the protein contents (25.69–37.54 mg/g) were generally high in HDJ. Forty-three species were identified from the HDJ and CDJ. The main species were verified to be Bacillus amyloliquefaciens (B. amyloliquefaciens), B. amyloliquefaciens subsp. plantarum, Bacillus licheniformis, Bacillus sp. and Bacillus subtilis. Comparing the ratios of isoflavone types, the HDJ has an aglycone ratio of >80%, and 3HDJ indicates a ratio of isoflavone to aglycone of 100%. In the CDJ, except 4CDJ, glycosides account for a high proportion of more than 50%. The results of antioxidant activities and DNA protection effects were variedly confirmed regardless of HDJs and CDJs. Through these results, it is judged that HDJs have a variety of bacterial species compared to CDJs, and these are biologically active and converted from glycoside to aglycone. Bacterial distribution and isoflavone contents could be used as basic data

    Comprehensive Comparison of Chemical Composition and Antioxidant Activity of Panax ginseng Sprouts by Different Cultivation Systems in a Plant Factory

    No full text
    In this study, the primary (such as amino acids, fatty acids, and minerals) and secondary (including ginsenosides, phenolic acids, and flavonols) metabolites and antioxidant effects of Panax ginseng sprouts (PGSs) by different cultivation systems, such as soil&ndash;substrate cultivation (SSC) and deep-water cultivation (DWC), in a plant factory has been observed. There was no significant difference in the total fatty acid (FA) contents. Particularly, the major FAs of PGSs were palmitic acid (207.4 mg/100 g) of saturated FAs and linoleic acid (397.6 mg/100 g) and &alpha;-linolenic acid (222.6 mg/100 g) of unsaturated FAs in the SSC system. The values of total amino acids were all higher in SSC than in DWC. In the case of ginsenosides, the total protopanaxtriol product was 30.88 mg/g in SSC, while the total protopanaxdiol product was 34.83 mg/g in DWC. In particular, the values of total phenolic acids and total flavonols were 133.36 and 388.19 ug/g, respectively, and SSC had a higher content than DWC. In conclusion, the SSC system was shown to be higher in nutritional constituents and antioxidant activities in soil cultivation, suggesting that PGS with SSC has a positive effect on the quality of PGS in a plant factory
    corecore