58 research outputs found

    Frailty and Its Impact on Health-Related Quality of Life: A Cross-Sectional Study on Elder Community-Dwelling Preventive Health Service Users

    Get PDF
    BACKGROUND: The purpose of this study was to identify the incidence of frailty and to investigate the relationship between frailty status and health-related quality of life (HRQoL) in the community-dwelling elderly population who utilize preventive health services. METHODS: People aged 65 years and older who visited a medical center in Taipei City from March to August in 2011 for an annual routine check-up provided by the National Health Insurance were eligible. A total of 374 eligible elderly adults without cognitive impairment had a mean age of 74.6±6.3 years. Frailty status was determined according to the Fried frailty criteria. HRQoL was measured with Short Form-36 (SF-36). Multiple regression analyses examined the relationship between frailty status and the two summary scales of SF-36. Models were adjusted for the participants' sociodemographic and health status. RESULTS: After adjusting for sociodemographic and health-related covariables, frailty was found to be more significantly associated (p<0.001) with lower scores on both physical and mental health-related quality of life summary scales compared with robustness. For the frailty phenotypes, slowness represented the major contributing factor in the physical component scale of SF-36, and exhaustion was the primary contributing factor in the mental component scale. CONCLUSION: The status of frailty is closely associated with HRQoL in elderly Taiwanese preventive health service users. The impacts of frailty phenotypes on physical and mental aspects of HRQoL differ

    Visible Light Responsive Photocatalyst Induces Progressive and Apical-Terminus Preferential Damages on Escherichia coli Surfaces

    Get PDF
    BACKGROUND: Recent research shows that visible-light responsive photocatalysts have potential usage in antimicrobial applications. However, the dynamic changes in the damage to photocatalyzed bacteria remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: Facilitated by atomic force microscopy, this study analyzes the visible-light driven photocatalyst-mediated damage of Escherichia coli. Results show that antibacterial properties are associated with the appearance of hole-like structures on the bacteria surfaces. Unexpectedly, these hole-like structures were preferentially induced at the apical terminus of rod shaped E. coli cells. Differentiating the damages into various levels and analyzing the percentage of damage to the cells showed that photocatalysis was likely to elicit sequential damages in E. coli cells. The process began with changing the surface properties on bacterial cells, as indicated in surface roughness measurements using atomic force microscopy, and holes then formed at the apical terminus of the cells. The holes were then subsequently enlarged until the cells were totally transformed into a flattened shape. Parallel experiments indicated that photocatalysis-induced bacterial protein leakage is associated with the progression of hole-like damages, further suggesting pore formation. Control experiments using ultraviolet light responsive titanium-dioxide substrates also obtained similar observations, suggesting that this is a general phenomenon of E. coli in response to photocatalysis. CONCLUSION/SIGNIFICANCE: The photocatalysis-mediated localization-preferential damage to E. coli cells reveals the weak points of the bacteria. This might facilitate the investigation of antibacterial mechanism of the photocatalysis

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Viral Hepatitis, Cholesterol Metabolism, and Cholesterol-Lowering Natural Compounds

    No full text
    Hepatitis is defined as inflammation of the liver; it can be acute or chronic. In chronic cases, the prolonged inflammation gradually damages the liver, resulting in liver fibrosis, cirrhosis, and sometimes liver failure or cancer. Hepatitis is often caused by viral infections. The most common causes of viral hepatitis are the five hepatitis viruses&mdash;hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). While HAV and HEV rarely (or do not) cause chronic hepatitis, a considerable proportion of acute hepatitis cases caused by HBV (sometimes co-infected with HDV) and HCV infections become chronic. Thus, many medical researchers have focused on the treatment of HBV and HCV. It has been documented that host lipid metabolism, particularly cholesterol metabolism, is required for the hepatitis viral infection and life cycle. Thus, manipulating host cholesterol metabolism-related genes and proteins is a strategy used in fighting the viral infections. Efforts have been made to evaluate the efficacy of cholesterol-lowering drugs, particularly 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, in the treatment of hepatitis viral infections; promising results have been obtained. This review provides information on the relationships between hepatitis viruses and host cholesterol metabolism/homeostasis, as well as the discovery/development of cholesterol-lowering natural phytochemicals that could potentially be applied in the treatment of viral hepatitis

    Viral Hepatitis, Cholesterol Metabolism, and Cholesterol-Lowering Natural Compounds

    No full text
    Hepatitis is defined as inflammation of the liver; it can be acute or chronic. In chronic cases, the prolonged inflammation gradually damages the liver, resulting in liver fibrosis, cirrhosis, and sometimes liver failure or cancer. Hepatitis is often caused by viral infections. The most common causes of viral hepatitis are the five hepatitis viruses—hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). While HAV and HEV rarely (or do not) cause chronic hepatitis, a considerable proportion of acute hepatitis cases caused by HBV (sometimes co-infected with HDV) and HCV infections become chronic. Thus, many medical researchers have focused on the treatment of HBV and HCV. It has been documented that host lipid metabolism, particularly cholesterol metabolism, is required for the hepatitis viral infection and life cycle. Thus, manipulating host cholesterol metabolism-related genes and proteins is a strategy used in fighting the viral infections. Efforts have been made to evaluate the efficacy of cholesterol-lowering drugs, particularly 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, in the treatment of hepatitis viral infections; promising results have been obtained. This review provides information on the relationships between hepatitis viruses and host cholesterol metabolism/homeostasis, as well as the discovery/development of cholesterol-lowering natural phytochemicals that could potentially be applied in the treatment of viral hepatitis

    Computer-aided discovery, design, and investigation of COVID-19 therapeutics

    No full text
    Coronavirus disease 2019 (COVID-19) pandemic is currently the most serious public health threat faced by mankind. Thus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, is being intensively investigated. Several vaccines are now available for clinical use. However, owing to the highly mutated nature of RNA viruses, the SARS-CoV-2 is changing at a rapid speed. Breakthrough infections by SARS-CoV-2 variants have been seen in vaccinated individuals. As a result, effective therapeutics for treating COVID-19 patients is urgently required. With the advance of computer technology, computational methods have become increasingly powerful in the biomedical research and pharmaceutical drug discovery. The applications of these techniques have largely reduced the costs and simplified processes of pharmaceutical drug developments. Intensive and extensive studies on SARS-CoV-2 proteins have been carried out and three-dimensional structures of the major SARS-CoV-2 proteins have been resolved and deposited in the Protein Data Bank. These structures provide the foundations for drug discovery and design using the structure-based computations, such as molecular docking and molecular dynamics simulations. In this review, introduction to the applications of computational methods in the discovery and design of novel drugs and repurposing of existing drugs for the treatments of COVID-19 is given. The examples of computer-aided investigations and screening of COVID-19 effective therapeutic compounds, functional peptides, as well as effective molecules from the herb medicines are discussed

    Atomic force microscopy in biology and biomedicine

    Get PDF
    AbstractIn order to gain better understanding of the behavior of complex biological systems, it is sometimes necessary to monitor biological samples in their native state and in their physiological environments. However, until recently, bioscientists have been unable to obtain real-space images of biological and biochemical structures in their physiological aqueous environments with a resolution better than the diffraction limit of conventional optical microscopy, which is approximately 350 nm. The invention of the atomic force microscope by Binnig, Quate and Gerber in 1986 brought new hope in this area. Modifications and improvements to the atomic force microscope in the past two decades have enabled the observation of biological samples from large structures, such as hair and whole cells, down to individual molecules of nucleic acids and proteins with submolecular resolution. This review introduces the basic principles of atomic force microscopy and recent developments in its applications in biological and biochemical research, including those in the fields of virology, bacteriology, cell biology and nucleic acid, protein and peptide studies, as well as electrostatic measurements in biological samples

    A Sequence in the loop domain of hepatitis C virus E2 protein identified in silico as crucial for the selective binding to human CD81.

    No full text
    Hepatitis C virus (HCV) is a species-specific pathogenic virus that infects only humans and chimpanzees. Previous studies have indicated that interactions between the HCV E2 protein and CD81 on host cells are required for HCV infection. To determine the crucial factors for species-specific interactions at the molecular level, this study employed in silico molecular docking involving molecular dynamic simulations of the binding of HCV E2 onto human and rat CD81s. In vitro experiments including surface plasmon resonance measurements and cellular binding assays were applied for simple validations of the in silico results. The in silico studies identified two binding regions on the HCV E2 loop domain, namely E2-site1 and E2-site2, as being crucial for the interactions with CD81s, with the E2-site2 as the determinant factor for human-specific binding. Free energy calculations indicated that the E2/CD81 binding process might follow a two-step model involving (i) the electrostatic interaction-driven initial binding of human-specific E2-site2, followed by (ii) changes in the E2 orientation to facilitate the hydrophobic and van der Waals interaction-driven binding of E2-site1. The sequence of the human-specific, stronger-binding E2-site2 could serve as a candidate template for the future development of HCV-inhibiting peptide drugs
    corecore