4,682 research outputs found
Functional features of an ssi signal of plasmid pGKV21 in Escherichia coli
A single-strand initiation (ssi) signal was detected on the Lactococcus lactis plasmid pGKV21 containing the replicon of pWV01 by its ability to complement the poor growth of an M13 phage derivative (M13??lac182) lacking the complementary-strand origin in Escherichia coli. This ssi signal was situated at the 229-nucleotide (nt) DdeI-DraI fragment and located within the 109 nt upstream of the nick site of the putative plus origin. SSI activity is orientation specific with respect to the direction of replication. We constructed an ssi signal-deleted plasmid and then examined the effects of the ssi signal on the conversion of the single-stranded replication intermediate to double-stranded plasmid DNA in E. coli. The plasmid lacking an ssi signal accumulated much more plasmid single-stranded DNA than the wild-type plasmid did. Moreover, deletion of this region caused a great reduction in plasmid copy number or plasmid maintenance. These results suggest that in E. coli, this ssi signal directs its lagging-strand synthesis as a minus origin of plasmid pGKV21. Primer RNA synthesis in vitro suggests that E. coli RNA polymerase directly recognizes the 229-nt ssi signal and synthesizes primer RNA dependent on the presence of E. coli single-stranded DNA binding (SSB) protein. This region contains two stem-loop structures, stem-loop I and stem-loop II. Deletion of stem-loop I portion results in loss of priming activity by E. coli RNA polymerase, suggesting that stem-loop I portion is essential for priming by E. coli RNA polymerase on the SSB-coated single-stranded DNA template.open5
Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-control
The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20-49 years (Mean +/- SD: 33.47 +/- 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors.111413Ysciescopu
A Defined and Flexible Pocket Explains Aryl Substrate Promiscuity of the Cahuitamycin Starter Unit–Activating Enzyme CahJ
Cahuitamycins are biofilm inhibitors assembled by a convergent nonribosomal peptide synthetase pathway. Previous genetic analysis indicated that a discrete enzyme, CahJ, serves as a gatekeeper for cahuitamycin structural diversification. Here, the CahJ protein was probed structurally and functionally to guide the formation of new analogues by mutasynthetic studies. This analysis enabled the in vivo production of a new cahuitamycin congener through targeted precursor incorporation.Breaking the barrier: Biofilm formation is employed by pathogenic microbes to defend against antibiotic action. This study probes both structurally and functionally CahJ, a key biosynthetic adenylation enzyme involved in generation of the cahuitamycin biofilm inhibitors, and lays a foundation for the development of effective new analogues.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145379/1/cbic201800233_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145379/2/cbic201800233.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145379/3/cbic201800233-sup-0001-misc_information.pd
Unconventional spin-phonon coupling via the Dzyaloshinskii???Moriya interaction
Spin-phonon coupling (SPC) plays a critical role in numerous intriguing phenomena of transition metal oxides (TMOs). In 3d and 4d TMOs, the coupling between spin and lattice degrees of freedom is known to originate from the exchange interaction. On the other hand, the origin of SPC in 5d TMOs remains to be elucidated. To address this issue, we measured the phonon spectra of the 5d pyrochlore iridate Y 2 Ir 2 O 7 using optical spectroscopy. Three infrared-active phonons soften below the N??el temperature of T N ??? 170 K, indicating the existence of strong SPC. Simulations using density functional theory showed that the coupling is closely related to the Ir???O???Ir bond angle. A tight-binding model analysis reveals that this SPC is mainly mediated by the Dzyaloshinskii???Moriya interaction rather than the usual exchange interaction. We suggest that such unconventional SPC may be realized in other 5d TMOs with non-collinear magnetic order
Sphingosine 1-phosphate receptor 4 promotes nonalcoholic steatohepatitis by activating NLRP3 inflammasome
BACKGROUND & AIMS: Sphingosine 1-phosphate receptors (S1PRs) are a group of G-protein-coupled receptors that confer a broad range of functional effects in chronic inflammatory and metabolic diseases. S1PRs also may mediate the development of nonalcoholic steatohepatitis (NASH), but the specific subtypes involved and the mechanism of action are unclear. METHODS: We investigated which type of S1PR isoforms is activated in various murine models of NASH. The mechanism of action of S1PR4 was examined in hepatic macrophages isolated from high-fat, high-cholesterol diet (HFHCD)-fed mice. We developed a selective S1PR4 functional antagonist by screening the fingolimod (2-amino-2-[2-(4- n-octylphenyl)ethyl]-1,3-propanediol hydrochloride)-like sphingolipid-focused library. RESULTS: The livers of various mouse models of NASH as well as hepatic macrophages showed high expression of S1pr4. Moreover, in a cohort of NASH patients, expression of S1PR4 was 6-fold higher than those of healthy controls. S1pr4(++/-) mice were protected from HFHCD-induced NASH and hepatic fibrosis without changes in steatosis. S1pr4 depletion in hepatic macrophages inhibited lipopolysaccharide-mediated Ca++ release and deactivated the Nod-like receptor pyrin domaincontainning protein 3 (NLRP3) inflammasome. S1P increased the expression of S1pr4 in hepatic macrophages and activated NLRP3 inflammasome through inositol trisphosphate/inositol trisphosphate-receptor-dependent [Ca++] signaling. To further clarify the biological function of S1PR4, we developed SLB736, a novel selective functional antagonist of SIPR4. Similar to S1pr4(+/-) mice, administration of SLB736 to HFHCD-fed mice prevented the development of NASH and hepatic fibrosis, but not steatosis, by deactivating the NLRP3 inflammasome. CONCLUSIONS: S1PR4 may be a new therapeutic target for NASH that mediates the activation of NLRP3 inflammasome in hepatic macrophages
Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot phototransistors
Phototransistors that are based on a hybrid vertical heterojunction structure of two-dimensional (2D)/quantum dots (QDs) have recently attracted attention as a promising device architecture for enhancing the quantum efficiency of photodetectors. However, to optimize the device structure to allow for more efficient charge separation and transfer to the electrodes, a better understanding of the photophysical mechanisms that take place in these architectures is required. Here, we employ a novel concept involving the modulation of the built-in potential within the QD layers for creating a new hybrid MoS2/PbS QDs phototransistor with consecutive type II junctions. The effects of the built-in potential across the depletion region near the type II junction interface in the QD layers are found to improve the photoresponse as well as decrease the response times to 950 μs, which is the faster response time (by orders of magnitude) than that recorded for previously reported 2D/QD phototransistors. Also, by implementing an electric-field modulation of the MoS2 channel, our experimental results reveal that the detectivity can be as large as 1 × 1011 jones. This work demonstrates an important pathway toward designing hybrid phototransistors and mixed-dimensional van der Waals heterostructures
Ambipolar Field Effect in Topological Insulator Nanoplates of (BixSb1-x)2Te3
Topological insulators represent a new state of quantum matter attractive to
both fundamental physics and technological applications such as spintronics and
quantum information processing. In a topological insulator, the bulk energy gap
is traversed by spin-momentum locked surface states forming an odd number of
surface bands that possesses unique electronic properties. However, transport
measurements have often been dominated by residual bulk carriers from crystal
defects or environmental doping which mask the topological surface
contribution. Here we demonstrate (BixSb1-x)2Te3 as a tunable topological
insulator system to manipulate bulk conductivity by varying the Bi/Sb
composition ratio. (BixSb1-x)2Te3 ternary compounds are confirmed as
topological insulators for the entire composition range by angle resolved
photoemission spectroscopy (ARPES) measurements and ab initio calculations.
Additionally, we observe a clear ambipolar gating effect similar to that
observed in graphene using nanoplates of (BixSb1-x)2Te3 in
field-effect-transistor (FET) devices. The manipulation of carrier type and
concentration in topological insulator nanostructures demonstrated in this
study paves the way for implementation of topological insulators in
nanoelectronics and spintronics.Comment: 7 pages, 4 figure
Unconventional Anomalous Hall Effect from Antiferromagnetic Domain Walls of Nd\u3csub\u3e2\u3c/sub\u3eIr\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e7\u3c/sub\u3e Thin Films
Ferroic domain walls (DWs) create different symmetries and ordered states compared with those in single-domain bulk materials. In particular, the DWs of an antiferromagnet with noncoplanar spin structure have a distinct symmetry that cannot be realized in those of their ferromagnet counterparts. In this paper, we show that an unconventional anomalous Hall effect (AHE) can arise from the DWs of a noncoplanar antiferromagnet, Nd2Ir2O7. Bulk Nd2Ir2O7 has a cubic symmetry; thus, its Hall signal should be zero without an applied magnetic field. The DWs generated in this material break the twofold rotational symmetry, which allows for finite anomalous Hall conductivity. A strong f−d exchange interaction between the Nd and Ir magnetic moments significantly influences antiferromagnetic (AFM) domain switching. Our epitaxial Nd2Ir2O7 thin film showed a large enhancement of the AHE signal when the AFM domains switched, indicating that the AHE is mainly due to DWs. Our paper highlights the symmetry-broken interface of AFM materials as a means of exploring topological effects and their relevant applications
State-space Manifold and Rotating Black Holes
We study a class of fluctuating higher dimensional black hole configurations
obtained in string theory/ -theory compactifications. We explore the
intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the
Hessian of the coarse graining entropy, defined over an ensemble of brane
microstates. It has been shown that the state-space geometry spanned by the set
of invariant parameters is non-degenerate, regular and has a negative scalar
curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes,
supersymmetric black holes, - configurations and the
associated BMPV black holes. Interestingly, these solutions demonstrate that
the principal components of the state-space metric tensor admit a positive
definite form, while the off diagonal components do not. Furthermore, the ratio
of diagonal components weakens relatively faster than the off diagonal
components, and thus they swiftly come into an equilibrium statistical
configuration. Novel aspects of the scaling property suggest that the
brane-brane statistical pair correlation functions divulge an asymmetric
nature, in comparison with the others. This approach indicates that all above
configurations are effectively attractive and stable, on an arbitrary
hyper-surface of the state-space manifolds. It is nevertheless noticed that
there exists an intriguing relationship between non-ideal inter-brane
statistical interactions and phase transitions. The ramifications thus
described are consistent with the existing picture of the microscopic CFTs. We
conclude with an extended discussion of the implications of this work for the
physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry;
Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s
Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum
aspects of black holes, evaporation, thermodynamics; 04.50.Gh
Higher-dimensional black holes, black strings, and related objects. Edited
the bibliograph
Observation of Dirac plasmons in a topological insulator
Plasmons are the quantized collective oscillations of electrons in metals and
doped semiconductors. The plasmons of ordinary, massive electrons are since a
long time basic ingredients of research in plasmonics and in optical
metamaterials. Plasmons of massless Dirac electrons were instead recently
observed in a purely two-dimensional electron system (2DEG)like graphene, and
their properties are promising for new tunable plasmonic metamaterials in the
terahertz and the mid-infrared frequency range. Dirac quasi-particles are known
to exist also in the two-dimensional electron gas which forms at the surface of
topological insulators due to a strong spin-orbit interaction. Therefore,one
may look for their collective excitations by using infrared spectroscopy. Here
we first report evidence of plasmonic excitations in a topological insulator
(Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W
and period 2W to select suitable values of the plasmon wavevector k. Their
lineshape was found to be extremely robust vs. temperature between 6 and 300 K,
as one may expect for the excitations of topological carriers. Moreover, by
changing W and measuring in the terahertz range the plasmonic frequency vP vs.
k we could show, without using any fitting parameter, that the dispersion curve
is in quantitative agreement with that predicted for Dirac plasmons.Comment: 11 pages, 3 figures, published in Nature Nanotechnology (2013
- …