85,641 research outputs found

    Towards an understanding of hole superconductivity

    Full text link
    From the very beginning K. Alex M\"uller emphasized that the materials he and George Bednorz discovered in 1986 were holehole superconductors. Here I would like to share with him and others what I believe to be thethe key reason for why high TcT_c cuprates as well as all other superconductors are hole superconductors, which I only came to understand a few months ago. This paper is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday. arXiv admin note: text overlap with arXiv:1703.0977

    A review of studies mapping (or cross walking) from non-preference based measures of health to generic preference-based measures

    Get PDF
    This paper presents a systematic review of current practice in mapping between nonpreference based measures and generic preference-based measures. It reviews the studies identified by a systematic search of the published literature and the grey literature. This review seeks to address the feasibility and overall validity of this approach, the circumstances when it should be considered and to bring together any lessons for future mapping studies.mapping; cross walking; preference-based measures; QALYs

    Heat transport study of the spin liquid candidate 1T-TaS2

    Get PDF
    We present the ultra-low-temperature thermal conductivity measurements on single crystals of the prototypical charge-density-wave material 1TT-TaS2_2, which was recently argued to be a candidate for quantum spin liquid. Our experiments show that the residual linear term of thermal conductivity at zero field is essentially zero, within the experimental accuracy. Furthermore, the thermal conductivity is found to be insensitive to the magnetic field up to 9 T. These results clearly demonstrate the absence of itinerant magnetic excitations with fermionic statistics in bulk 1TT-TaS2_2 and, thus, put a strong constraint on the theories of the ground state of this material.Comment: 5 pages, 3 figure

    Algorithms for Replica Placement in High-Availability Storage

    Full text link
    A new model of causal failure is presented and used to solve a novel replica placement problem in data centers. The model describes dependencies among system components as a directed graph. A replica placement is defined as a subset of vertices in such a graph. A criterion for optimizing replica placements is formalized and explained. In this work, the optimization goal is to avoid choosing placements in which a single failure event is likely to wipe out multiple replicas. Using this criterion, a fast algorithm is given for the scenario in which the dependency model is a tree. The main contribution of the paper is an O(n+ρlogρ)O(n + \rho \log \rho) dynamic programming algorithm for placing ρ\rho replicas on a tree with nn vertices. This algorithm exhibits the interesting property that only two subproblems need to be recursively considered at each stage. An O(n2ρ)O(n^2 \rho) greedy algorithm is also briefly reported.Comment: 22 pages, 7 figures, 4 algorithm listing

    Parallel processing area extraction and data transfer number reduction for automatic GPU offloading of IoT applications

    Full text link
    For Open IoT, we have proposed Tacit Computing technology to discover the devices that have data users need on demand and use them dynamically and an automatic GPU offloading technology as an elementary technology of Tacit Computing. However, it can improve limited applications because it only optimizes parallelizable loop statements extraction. Thus, in this paper, to improve performances of more applications automatically, we propose an improved method with reduction of data transfer between CPU and GPU. We evaluate our proposed offloading method by applying it to Darknet and find that it can process it 3 times as quickly as only using CPU.Comment: 6 pages, 4 figures, in Japanese, IEICE Technical Report, SC2018-3

    Preliminary Results from Recent Measurements of the Antiprotonic Helium Hyperfine Structure

    Full text link
    We report on preliminary results from a systematic study of the hyperfine (HF) structure of antiprotonic helium. This precise measurement which was commenced in 2006, has now been completed. Our initial analysis shows no apparent density or power dependence and therefore the results can be averaged. The statistical error of the observable M1 transitions is a factor of 60 smaller than that of three body quantum electrodynamic (QED) calculations, while their difference has been resolved to a precision comparable to theory (a factor of 10 better than our first measurement). This difference is sensitive to the antiproton magnetic moment and agreement between theory and experiment would lead to an increased precision of this parameter, thus providing a test of CPT invariance.Comment: 6 pages, 4 figure

    The CBOE S&P 500 Three-month variance futures

    Get PDF
    In this article, we study the market of the Chicago Board Options Exchange S&P 500 three-month variance futures that were listed on May 18, 2004. By using a simple mean-reverting stochastic volatility model for the S&P 500 index, we present a linear relation between the price of fixed time-to-maturity variance futures and the VIX2. The model prediction is supported by empirical tests. We find that a model with a fixed mean-reverting speed of 1.2929 and a daily-calibrated floating long-term mean level has a good fit to the market data between May 18, 2004, and August 17, 2007. The market price of volatility risk estimated from the 30-day realized variance and VIX2 has a mean value of -19.1184. © 2009 Wiley Periodicals, Inc.postprin

    Symmetry breaking and unconventional charge ordering in single crystal Na2.7_{2.7}Ru4_4O9_9

    Get PDF
    The interplay of charge, spin, and lattice degrees of freedom in matter leads to various forms of ordered states through phase transitions. An important subclass of these phenomena of complex materials is charge ordering (CO), mainly driven by mixed-valence states. We discovered by combining the results of electrical resistivity (ρ\rho), specific heat, susceptibility χ\chi (\textit{T}), and single crystal x-ray diffraction (SC-XRD) that Na2.7_{2.7}Ru4_4O9_9 with the monoclinic tunnel type lattice (space group CC2/mm) exhibits an unconventional CO at room temperature while retaining metallicity. The temperature-dependent SC-XRD results show successive phase transitions with super-lattice reflections at \textbf{q}1_1=(0, 12\frac{1}{2}, 0) and \textbf{q}2_2=(0, 13\frac{1}{3}, 13\frac{1}{3}) below TC2T_{\textrm{C2}} (365 K) and only at \textbf{q}1_1=(0, 12\frac{1}{2}, 0) between TC2T_{\textrm{C2}} and TC1T_{\textrm{C1}} (630 K). We interpreted these as an evidence for the formation of an unconventional CO. It reveals a strong first-order phase transition in the electrical resistivity at TC2T_{\textrm{C2}} (cooling) = 345 K and TC2T_{\textrm{C2}} (heating) = 365 K. We argue that the origin of the phase transition is due to the localized 4dd Ru-electrons. The results of our finding reveal an unique example of Ru3+^{3+}/Ru4+^{4+} mixed valance heavy \textit{d}4^4 ions.Comment: 10 pages, 9 figure
    corecore