212 research outputs found
(Phosphanyl)phosphaketenes as building blocks for novel phosphorus heterocycles.
Although BH3 simply coordinates the endocyclic P of (phospholidino)phosphaketene 1Dipp , the bulkier B(C6F5)3 gives rise to a zwitterionic diphosphirenium, which is a novel type of 2π-electron aromatic system as shown by the calculated NICS values. While the reaction of 1Dipp with Na[PCO(dioxane) x ] is unselective, the same reaction with the sterically bulky (phospholidino)phosphaketene 1Ar** [Ar** = 2,6-bis[di(4-tert-butylphenyl)methyl]-4-methylphenyl selectively affords a sodium bridged dimer containing a hitherto unknown λ3,λ5,λ3-triphosphete core. The latter formally results from "P-" addition to a 1,3-P/C-dipole. Similarly, adamantyl isonitrile adds to 1Dipp giving a 4-membered phosphacycle. In contrast to 1, the phosphaketene derived from the electrophilic diazaphospholidine-4,5-dione is unstable and reacts with a second molecule of Na[PCO(dioxane) x ] to afford a 1,3,4-oxadiphospholonide derivative
Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice
Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3 mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly on the tissue
Distributed Combining Techniques for Distributed Detection in Fading Wireless Sensor Networks
We investigate distributed combining techniques for distributed detection in wireless sensor networks (WSNs) over Rayleigh fading multiple access channel (MAC). The MAC also suffers from with path loss and additive noise. The WSN is modelled as a Poisson point process (PPP). Two distributed transmit combining techniques are proposed to mitigate fading; distributed equal gain transmit combining (ddEGTC) and distributed maximum ratio transmit combining (dMRTC). The performance of the previous methods is analysed using stochastic geometry tools, where the mean and variance of the detector’s test statistic are found thus enabling the fitting of the received signal distribution by a log-normal distribution. Surprisingly, simulation results show a that ddEGTC outperforms dMRTC
Sost haploinsufficiency provokes peracute lethal cardiac tamponade without rescuing the osteopenia in a mouse model of excess glucocorticoids
Glucocorticoid-induced secondary osteoporosis is the most predictable side-effect of this anti-inflammatory. One of the main mechanisms by which glucocorticoids achieve such deleterious outcome in bone is by antagonizing Wnt/β-catenin signalling. Sclerostin, encoded by Sost gene, is the main negative regulator of the pro-formative and anti-resorptive role of the Wnt signaling pathway in the skeleton. We hypothesized that the partial inactivation of sclerostin function by genetic manipulation will rescue the osteopenia induced by high endogenous glucocorticoid levels. Sost-deficient mice were crossed with an established mouse model of excess glucocorticoids and the effects on bone mass and structure were evaluated. Sost haploinsufficiency did not rescue the low bone mass induced by high glucocorticoids. Intriguingly, the critical manifestation of Sost-deficiency combined with glucocorticoid excess was sporadic, sudden, unprovoked, and non-convulsive death. Detailed histopathological analysis in a wide range of tissues identified peracute haemopericardium and cardiac tamponade to be the cause. These preclinical studies reveal outcomes with direct relevance to ongoing clinical trials exploring the use of anti-sclerostin antibodies as a treatment for osteoporosis. They particularly highlight a potential for increased cardiovascular risk and may inform improved stratification of patients that might otherwise benefit from anti-sclerostin antibody treatment
Fusion Rules for Distributed Detection in Clustered Wireless Sensor Networks with Imperfect Channels
In this paper we investigate fusion rules for distributed detection in large random clustered-wireless sensor networks (WSNs) with a three-tier hierarchy; the sensor nodes (SNs), the cluster heads (CHs) and the fusion center (FC). The CHs collect the SNs' local decisions and relay them to the FC that then fuses them to reach the ultimate decision. The SN-CH and the CH-FC channels suffer from additive white Gaussian noise (AWGN). In this context, we derive the optimal log-likelihood ratio (LLR) fusion rule, which turns out to be intractable. So, we develop a sub-optimal linear fusion rule (LFR) that weighs the cluster's data according to both its local detection performance and the quality of the communication channels. In order to implement it, we propose an approximate maximum likelihood based LFR (LFR-aML), which estimates the required parameters for the LFR. We also derive Gaussian-tail upper bounds for the detection and false alarms probabilities for the LFR. Furthermore, an optimal CH transmission power allocation strategy is developed by solving the Karush-Kuhn-Tucker (KKT) conditions for the related optimization problem. Extensive simulations show that the LFR attains a detection performance near to that of the optimal LLR and confirms the validity of the proposed upper bounds. Moreover, when compared to equal power allocation, simulations show that our proposed power allocation strategy achieves a significant power saving at the expense of a small reduction in the detection performance
Cross-Dehydrogenative Couplings between Indoles and β-Keto Esters : Ligand-Assisted Ligand Tautomerization and Dehydrogenation via a Proton-Assisted Electron Transfer to Pd(II)
Cross-dehydrogenative coupling reactions between -ketoesters and electron-rich arenes, such as indoles, proceed with high regiochemical fidelity with a range of -ketoesters and indoles. The mechanism of the reaction between a prototypical -ketoester, ethyl 2-oxocyclopentanonecarboxylate and N-methylindole, has been studied experimentally by monitoring the temporal course of the reaction by 1H NMR, kinetic isotope effect studies, and control experiments. DFT calculations have been carried out using a dispersion-corrected range-separated hybrid functional (B97X-D) to explore the basic elementary steps of the catalytic cycle. The experimental results indicate that the reaction proceeds via two catalytic cycles. Cycle A, the dehydrogenation cycle, produces an enone intermediate. The dehydrogenation is assisted by N-methylindole, which acts as a ligand for Pd(II). The compu-tational studies agree with this conclusion, and identify the turnover-limiting step of the dehydrogenation step, which involves a change in the coordination mode of the -keto ester ligand from an O,O’-chelate to an C-bound Pd enolate. This ligand tautom-erization event is assisted by the -bound indole ligand. Subsequent scission of the ’-C–H bond takes place via a proton-assisted electron transfer mechanism, where Pd(II) acts as an electron sink and the trifluoroacetate ligand acts as a proton acceptor, to pro-duce the Pd(0) complex of the enone intermediate. The coupling is completed in cycle B, where the enone is coupled with indole. Pd(TFA)2 and TFA-catalyzed pathways were examined experimentally and computationally for this cycle, and both were found to be viable routes for the coupling step
Hybrid RSS-RTT Localization Scheme for Indoor Wireless Networks
[EN]Nowadays, a variety of information related to the distance between two wireless devices can be easily obtained. This paper presents a hybrid localization scheme that combines received signal strength (RSS) and round-trip time (RTT) information with the aim of improving the previous localization schemes. The hybrid localization scheme is based on an RSS ranging technique that uses RTT ranging estimates as constraints among other heuristic constraints. Once distances have been well estimated, the position of the mobile station (MS) to be located is estimated using a new robust least-squared multilateration (RLSM) technique that combines the RSS and RTT ranging estimates mitigating the negative effect of outliers. The hybrid localization scheme coupled with simulations and measurements demonstrates that it outperforms the conventional RSS-based and RTT-based localization schemes, without using either a tracking technique or a previous calibration stage of the environment.Dirección General de Telecomunicaciones de la Consejería de Fomento de Castilla y Leó
A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols.
Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.We are grateful to the Marie Curie Foundation (D.P. & J.C.), EPSRC (T.W.G.), the ERC (V.D.), and the ERC and EPSRC for Fellowships (M.J.G.). We are grateful to Adam Smalley for DFT calculations and Yohei Shimidzu for assistance with optimization of the C–H acetoxylation reaction. Mass spectrometry data was acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University. The authors declare no competing financial interests.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.236
- …