2 research outputs found

    Determining the Minimally Effective Dose of a Clinical Candidate AAV Vector in a Mouse Model of Crigler-Najjar Syndrome

    No full text
    Liver metabolism disorders are attractive targets for gene therapy, because low vector doses can reverse the buildup of toxic metabolites in the blood. Crigler-Najjar syndrome is an inherited disorder of bilirubin metabolism that is caused by the absence of uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) activity. This syndrome is characterized by hyperbilirubinemia and jaundice. Unfortunately, current phototherapy treatment is not effective long term. We intravenously injected phototherapy-rescued adult UGT1 knockout mice with 2.5 × 1010–2.5 × 1013 genome copies (GC)/kg of a clinical candidate vector, AAV8.TBG.hUGT1A1co, to study the treatment of disease compared to vehicle-only control mice. There were no apparent vector-related laboratory or clinical sequelae; the only abnormalities in clinical pathology were elevations in liver transaminases, primarily in male mice at the highest vector dose. Minimal to mild histopathological findings were present in control and vector-administered male mice. At vector doses greater than 2.5 × 1011 GC/kg, we observed a reversal of total bilirubin levels to wild-type levels. Based on a significant reduction in serum total bilirubin levels, we determined the minimally effective dose in this mouse model of Crigler-Najjar syndrome to be 2.5 × 1011 GC/kg. Keywords: Crigler-Najjar Syndrome, adeno-associated virus, bilirubin, live

    AAV8 Gene Therapy for Crigler-Najjar Syndrome in Macaques Elicited Transgene T Cell Responses That Are Resident to the Liver

    No full text
    Systemic delivery of adeno-associated viral (AAV) vectors has been evaluated for the treatment of several liver diseases, including homozygous familial hypercholesterolemia, ornithine transcarbamylase deficiency, and hemophilia. Here, we evaluated this approach for the treatment of Crigler-Najjar syndrome. We administered wild-type rhesus macaques with 1.0 × 1013 or 2.5 × 1013 genome copies/kg of an AAV serotype 8 vector expressing a codon-optimized version of human uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) from a liver-specific promoter. We extensively studied vector biodistribution, transgene expression, and immune responses following vector administration. All rhesus macaques survived until their scheduled necropsy at day 56 and showed no clinical abnormalities during the course of the study. Macaques administered with either vector dose developed a T cell response to the AAV capsid and/or transgene. We mapped the immunodominant epitope in the human UGT1A1 sequence, and we found no correlation between peripheral and tissue-resident lymphocyte responses. Upon further investigation, we characterized CD107a+, granzyme B+, CD4+, and CD8+ transgene-specific cellular responses that were restricted to tissue-resident T cells. This study highlights the importance of studying immune responses at the vector transduction site and the limited usefulness of blood as a surrogate to evaluate tissue-restricted T cell responses. Keywords: gene therapy, AAV, T cell, immune response, UGT1A1, Crigler-Najjar, transgene expression, live
    corecore