7 research outputs found

    Regulation of TLR9-induced Innate Immune Responses in Sheep Peyer's Patches.

    Get PDF
    One of the fundamental questions in mucosal immunology is how the intestine maintains tolerance to food antigens and commensal flora, and yet it is capable of mounting immune responses to pathogens. Peyer’s patches (PP) are lymphoid aggregates that are found in the small intestine and are the primary sites where adaptive immune responses are initiated in the intestine. An understanding of how PP cells regulate innate immune responses may provide information on how immune responses are regulated in the intestine. The toll-like receptors (TLRs) are a family of pattern recognition receptors (PRR) which provide a sensory mechanism for the detection of infectious threats. TLR9 recognizes bacterial DNA or synthetic CpG oligodeoxynucleotides (ODN). Cells that express TLR9 when stimulated with CpG ODN proliferate and produce Th1-like pro-inflammatory cytokines and upregulate co-stimulatory molecules. Because the intestine is constantly exposed to bacterial DNA from commensal flora, immune cells from the gut must have evolved mechanisms to modulate responses to TLR9 stimulation to prevent responses to harmless bacteria. Our hypothesis is that innate immune responses to the TLR9 agonist CpG ODN in Peyer’s patches (PP) are attenuated compared to other tissues such as blood or lymph nodes. This is due to local regulatory mechanisms unique to the intestinal microenvironment. We conducted a number of experiments to test this hypothesis. We initially assessed the immunostimulatory activity of three available classes of CpG ODN in lymph nodes (LN), peripheral blood mononuclear cells (PBMC) and PP since this had not been done in ruminants. We found that CpG ODN induced strong IFNá, IFN-gamma, IL-12, lymphocyte proliferation and NK-like activity in LN and PBMC. In contrast, these responses were significantly less in PP stimulated with CpG ODN. We wondered whether the reduced responses of PP cells to CpG ODN were unique to the TLR9 agonist. For this reason we tested responses of cells from these tissues to poly (I:C), LPS, and single-stranded RNA, which are agonists for TLR3, TLR4, and TLR7/8 respectively. Additionally, we tested combinations of TLRs since others have reported that multiple TLR agonists may induce synergistic responses. All TLR agonists or their combinations either failed to induce detectable responses or the responses were significantly less in PP compared to other tissues. Thus we concluded that PP cells responses to TLR stimulation were attenuated. In all tissues tested, there were no synergistic responses (IFN-alpha, IFN-gamma and lymphocyte proliferation) following stimulation with combinations of agonists. However, there was inhibition of PBMC responses when TLR7/8 agonists were combined with CpG ODN (TLR9 agonist). Importantly, TLR7/8 agonists reduced the CpG-induced proliferative responses in purified blood B cells. Interestingly, ovine B cells constitutively expressed TLR7/8 and TLR9 mRNA, suggesting the potential for cross-talk between the receptors. Interestingly, cell from all isolated tissues [ileal PP (IPP), jejunal PP (JPP), mesenteric LN (mLN) and PBMC] expressed similar levels of TLR9 mRNA, suggesting that the reduced responsiveness to CpG ODN stimulation in PP was not due to a lack of TLR9 expression. Surprisingly, we observed that PP cells spontaneously secreted significant amounts of the immunoregulatory cytokine IL-10. Furthermore, we confirmed that CD21+ B cells were the source of the IL-10. We then examined the role of IL-10 in regulating IFN and IL-12 responses in PP. Neutralization of IL-10 resulted in a significant increase in the numbers of CpG-induced IFNá-secreting cells detected and in IFN-gamma and IL-12 production by PP cells (both follicular and interfollicular lymphocytes). Similarly, depletion of the CD21+ B cells resulted in significant increases in IFNá, IFN-gamma and IL-12 responses. These observations support the conclusion that IL-10-secreting PP CD21+ B cells suppress innate immune responses in PP. Further characterization by flow cytometry revealed that these cells were CD1b-CD5-CD11c-CD72+CD21+ IgM+ B cells. We have proposed that these IL-10-secreting PP CD21+ B cells are a novel subset of regulatory B cells (Bregs). Finally, we examined the capacity of IL-10 secreting B cells (Bregs) to respond to CpG ODN. To achieve this, we compared CD21+ B cells from blood and JPP. Unlike blood CD21+ B cells, CD21+ B cells from JPP proliferated poorly in response to CpG ODN. Moreover, PP CD21+ B cells, unlike blood CD21+ B cells, do not secrete IgM or IL-12 in response to CpG stimulation, although both PP and blood CD21+ B cells express similar level of TLR9 mRNA. Neutralization of IL-10 did not enhance CpG-induced proliferative responses in PP CD21+ B cells. Thus IL-10 does not play a direct role in the hyporesponsiveness of PP CD21+ B cells to CpG ODN. To further explore the mechanism by which PP Bregs fail to respond to CpG ODN stimulation, we used a kinome analysis to determine whether the TLR9 pathway was functional in PP Bregs compared to blood CD21+ B cells. We observed that peptides representing critical adaptor molecules downstream of TLR9 such as IRAK1, TAK1, Casp8, p-38 MAPK, JNK, FOS, IKKá, NF-KB-p65 were not phosphorylated in JPP CD21+ B cells following CpG ODN stimulation. However, in blood CD21+ B cells stimulated with CpG ODN, the same peptides on the array were all highly phosphorylated leading to a functional TLR9 signaling pathway. Thus PP Bregs have evolved mechanisms by which the TLR9 signaling pathway is not activated following exposure to the TLR9 agonist, CpG ODN. In conclusion, we clearly demonstrated that TLR9-induced responses in cells from PP are significantly attenuated. This is a consequence of PP CD21+ B cells (Bregs) that spontaneously secrete IL-10, which in turn “conditions” an anti-inflammatory environment in this tissue leading to poor cytokine responses to the TLR9 agonist, CpG ODN. Additionally, we show that Bregs are unresponsiveness to TLR9 stimulation. This unresponsiveness is due to regulatory mechanisms in Bregs leading to a dysfunctional TLR9 signaling pathway. These may represent strategies by which PP dampen innate responses to pathogen-associated molecular patterns (PAMPs) in intestinal immune tissues to maintain intestinal immune homeostasis. These conclusions are consistent with our hypothesis that TLR responses in PP cells are attenuated, and this is due to B cell-mediated regulatory mechanisms that are unique to the intestinal microenvironment

    Association between S. Typhi-specific memory CD4+ and CD8+ T responses in the terminal ileum mucosa and in peripheral blood elicited by the live oral typhoid vaccine Ty21a in humans

    No full text
    CD4+ and CD8+ T subsets are essential components of the adaptive immune system which act in concert at the site of infections to effectively protect against pathogens. Very limited data is available in humans regarding the relationship between CD4+ and CD8+ S. Typhi responsive cells in the terminal ileum mucosa (TI) and peripheral blood following Ty21a oral typhoid immunization. Here, we compared TI lamina propria mononuclear cells (LPMC) and peripheral blood CD4+ and CD8+ T memory (TM) subsets responses and their relationship by Spearman’s correlation following Ty21a immunization in volunteers undergoing routine colonoscopy. We observed that Ty21a immunization (i) influences the homing and accumulation of both CD4+ and CD8+ T cells in the TI, particularly integrin α4β7+ CCR9+ CD8+ T cells, (ii) elicits significantly higher frequencies of LPMC S. Typhi-responsive CD8+ T multifunctional (CD107a, IFNγ, IL-17A and/or MIP1β) cells than their CD4+ T counterparts, and (iii) results in the correlation of LPMC CD4+ Teffector/memory (TEM) S. Typhi responses (CD107a, IFNγ, TNFα, IL-17A and/or MIP1β) to their LPMC CD8+ TEM counterparts. Moreover, we demonstrated that these positive correlations between CD4+ and CD8+ TEM occur primarily in TI LPMC but not in PBMC, suggesting important differences in responses between the mucosal and systemic compartments following oral Ty21a immunization. This study provides the first demonstration of the correlation of S. Typhi-specific CD4+ and CD8+ TM responses in the human terminal ileum mucosa and provides valuable information regarding the generation of mucosal and systemic immune responses following oral Ty21a-immunization which might impact future vaccine design and development

    Characterization and functional properties of gastric tissue-resident memory T cells from children, adults and the elderly

    No full text
    T cells are the main orchestrators of protective immunity in the stomach; however, limited information on the presence and function of the gastric T subsets is available mainly due to the difficulty in recovering high numbers of viable cells from human gastric biopsies. To overcome this shortcoming we optimized a cell isolation method that yielded high numbers of viable lamina propria mononuclear cells (LPMC) from gastric biopsies. Classic memory T (TM) subsets were identified in gastric LPMC and compared to peripheral blood mononuclear cells (PBMC) obtained from children, adults and the elderly using an optimized 14 color flow cytometry panel. A dominant effector memory (TEM) phenotype was observed in gastric LPMC CD4+ and CD8+ T cells in all age groups. We then evaluated whether these cells represented a population of gastric tissue-resident memory T (TRM) cells by assessing expression of CD103 and CD69. The vast majority of gastric LPMC CD8+ T cells either co-expressed CD103/CD69 (>70%) or expressed CD103 alone (~20%). Gastric LPMC CD4+ T cells also either co-expressed CD103/CD69 (>35%) or expressed at least one of these markers. Thus, gastric LPMC CD8+ and CD4+ T cells had the characteristics of TRM cells. Gastric CD8+ and CD4+ TRM cells produced multiple cytokines (IFN-γ, IL-2, TNF-α, IL-17A, MIP-1β) and up-regulated CD107a upon stimulation. However, marked differences were observed in their cytokine and multi-cytokine profiles when compared to their PBMC TEM counterparts. Furthermore, gastric CD8+ TRM and CD4+ TRM cells demonstrated differences in the frequency, susceptibility to activation and cytokine/multi-cytokine production profiles among the age groups. Most notably, children’s gastric TRM cells responded differently to stimuli than gastric TRM cells from adults or the elderly. In conclusion, we demonstrate the presence of gastric TRM which exhibit diverse functional characteristics in children, adults and the elderly

    Systemic and Terminal Ileum Mucosal Immunity Elicited by Oral Immunization With the Ty21a Typhoid Vaccine in HumansSummary

    No full text
    Background & Aims: Systemic cellular immunity elicited by the Ty21a oral typhoid vaccine has been extensively characterized. However, very limited data are available in humans regarding mucosal immunity at the site of infection (terminal ileum [TI]). Here we investigated the host immunity elicited by Ty21a immunization on terminal ileumâlamina propria mononuclear cells (LPMC) and peripheral blood in volunteers undergoing routine colonoscopy. Methods: We characterized LPMC-T memory (TM) subsets and assessed Salmonella enterica serovar Typhi (S Typhi)âspecific responses by multichromatic flow cytometry. Results: No differences were observed in cell yields and phenotypes in LPMC CD8+-TM subsets following Ty21a immunization. However, Ty21a immunization elicited LPMC CD8+ T cells exhibiting significant S Typhiâspecific responses (interferon-γ, tumor necrosis factor-α, interleukin-17A, and/or CD107a) in all major TM subsets (T-effector/memory [TEM], T-central/memory, and TEM-CD45RA+), although each TM subset exhibited unique characteristics. We also investigated whether Ty21a immunization elicited S Typhiâspecific multifunctional effectors in LPMC CD8+ TEM. We observed that LPMC CD8+ TEM responses were mostly multifunctional, except for those cells exhibiting the characteristics associated with cytotoxic responses. Finally, we compared mucosal with systemic responses and made the important observation that LPMC CD8+ S Typhiâspecific responses were unique and distinct from their systemic counterparts. Conclusions: This study provides the first demonstration of S Typhiâspecific responses in the human terminal ileum mucosa and provides novel insights into the generation of mucosal immune responses following oral Ty21a immunization. Keywords: Lamina Propria Mononuclear Cells, Multifunctional T Cells, CD8+-T Memory Cells, Typhoid, Vaccine

    Mucosal Associated Invariant T cells in the human gastric mucosa and blood: Role in Helicobacter pylori infection

    No full text
    Mucosal-associated invariant T (MAIT) cells represent a class of antimicrobial innate-like T cells that have been characterized in human blood, liver, lungs and intestine. Here, we investigated, for the first time, the presence of MAIT cells in the stomach of children, adults and the elderly undergoing routine endoscopy and assessed their reactivity to Helicobacter pylori (H. pylori-Hp), a major gastric pathogen. We observed that MAIT cells are present in the lamina propria compartment of the stomach and display a similar memory phenotype to blood MAIT cells. We then demonstrated that gastric and blood MAIT cells are able to recognize H. pylori. We found that CD8+ and CD4-CD8- (DN) MAIT cell subsets respond to H. pylori-infected macrophages stimulation in a MR-1 restrictive manner by producing cytokines (IFNg, TNFa, IL-17A) and exhibiting cytotoxic activity. Interestingly, we observed that blood MAIT cell frequency in Hp+ve individuals was significantly lower than in Hp-ve individuals. However, gastric MAIT cell frequency was not significantly different between Hp+ve and Hp-ve individuals, demonstrating a dichotomy between blood and gastric tissues. Further, we observed that the majority of gastric MAIT cells (>80%) expressed tissue-resident markers (CD69+ CD103+), which were only marginally present on PBMC MAIT cells (<3%), suggesting that gastric MAIT cells are readily available to respond quickly to pathogens. These results contribute important new information to the understanding of MAIT cells function on peripheral and mucosal tissues and its possible implications in the host response to H. pylori

    Early host immune responses in a human organoid-derived gallbladder monolayer to Salmonella Typhi strains from patients with acute and chronic infections: a comparative analysis

    No full text
    Salmonella enterica serovar Typhi (S. Typhi), a human-restricted pathogen, invades the host through the gut to cause typhoid fever. Recent calculations of the typhoid fever burden estimated that more than 10 million new typhoid fever cases occur in low and middle-income countries, resulting in 65,400-187,700 deaths yearly. Interestingly, if not antibiotic-treated, upon the resolution of acute disease, 1%-5% of patients become asymptomatic chronic carriers. Chronically infected hosts are not only critical reservoirs of infection that transmit the disease to naive individuals but are also predisposed to developing gallbladder carcinoma. Nevertheless, the molecular mechanisms involved in the early interactions between gallbladder epithelial cells and S. Typhi remain largely unknown. Based on our previous studies showing that closely related S. Typhi strains elicit distinct innate immune responses, we hypothesized that host molecular pathways activated by S. Typhi strains derived from acutely and chronically infected patients would differ. To test this hypothesis, we used a novel human organoid-derived polarized gallbladder monolayer model, and S. Typhi strains derived from acutely and chronically infected patients. We found that S. Typhi strains derived from acutely and chronically infected patients differentially regulate host mitogen-activated protein kinase (MAPK) and S6 transcription factors. These variations might be attributed to differential cytokine signaling, predominantly via TNF-α and IL-6 production and appear to be influenced by the duration the isolate was subjected to selective pressures in the gallbladder. These findings represent a significant leap in understanding the complexities behind chronic S. Typhi infections in the gallbladder and may uncover potential intervention targets
    corecore