5 research outputs found

    Monotone Solutions of a Nonautonomous Differential Equation for a Sedimenting Sphere

    Get PDF
    We study a class of integrodifferential equations and related ordinary differential equations for the initial value problem of a rigid sphere falling through an infinite fluid medium. We prove that for creeping Newtonian flow, the motion of the sphere is monotone in its approach to the steady state solution given by the Stokes drag. We discuss this property in terms of a general nonautonomous second order differential equation, focusing on a decaying nonautonomous term motivated by the sedimenting sphere proble

    Nonlinear saturation of electrostatic waves: mobile ions modify trapping scaling

    Full text link
    The amplitude equation for an unstable electrostatic wave in a multi-species Vlasov plasma has been derived. The dynamics of the mode amplitude ρ(t)\rho(t) is studied using an expansion in ρ\rho; in particular, in the limit γ0+\gamma\rightarrow0^+, the singularities in the expansion coefficients are analyzed to predict the asymptotic dependence of the electric field on the linear growth rate γ\gamma. Generically Ekγ5/2|E_k|\sim \gamma^{5/2}, as γ0+\gamma\rightarrow0^+, but in the limit of infinite ion mass or for instabilities in reflection-symmetric systems due to real eigenvalues the more familiar trapping scaling Ekγ2|E_k|\sim \gamma^{2} is predicted.Comment: 13 pages (Latex/RevTex), 4 postscript encapsulated figures which are included using the utility "uufiles". They should be automatically included with the text when it is downloaded. Figures also available in hard copy from the authors ([email protected]

    Oscillations of a solid sphere falling through a wormlike micellar fluid

    Full text link
    We present an experimental study of the motion of a solid sphere falling through a wormlike micellar fluid. While smaller or lighter spheres quickly reach a terminal velocity, larger or heavier spheres are found to oscillate in the direction of their falling motion. The onset of this instability correlates with a critical value of the velocity gradient scale Γc1\Gamma_{c}\sim 1 s1^{-1}. We relate this condition to the known complex rheology of wormlike micellar fluids, and suggest that the unsteady motion of the sphere is caused by the formation and breaking of flow-induced structures.Comment: 4 pages, 4 figure
    corecore