41 research outputs found

    CD1d Endosomal Trafficking Is Independently Regulated by an Intrinsic CD1d-Encoded Tyrosine Motif and by the Invariant Chain

    Get PDF
    AbstractEndosomal trafficking is an essential component of the CD1 pathway of lipid antigen presentation to T cells. We demonstrate that CD1d access to endosomal compartments is under dual regulation by an intrinsic tyrosine-based motif, which governs intense recycling between the plasma membrane and the endosome, and by the invariant chain, with which CD1d associates in the endoplasmic reticulum. Both pathways independently enhance antigen presentation to Vα14+ NKT cells, the main subset of CD1d-restricted T cells. These results reveal the complexity of CD1d trafficking and suggest that the invariant chain was a component of ancestral antigen presentation pathways prior to the evolution of MHC and CD1

    Environmental Risk Assessment for rVSVΔG-ZEBOV-GP, a Genetically Modified Live Vaccine for Ebola Virus Disease

    No full text
    rVSVΔG-ZEBOV-GP is a live, attenuated, recombinant vesicular stomatitis virus (rVSV)-based vaccine for the prevention of Ebola virus disease caused by Zaire ebolavirus. As a replication-competent genetically modified organism, rVSVΔG-ZEBOV-GP underwent various environmental evaluations prior to approval, the most in-depth being the environmental risk assessment (ERA) required by the European Medicines Agency. This ERA, as well as the underlying methodology used to arrive at a sound conclusion about the environmental risks of rVSVΔG-ZEBOV-GP, are described in this review. Clinical data from vaccinated adults demonstrated only infrequent, low-level shedding and transient, low-level viremia, indicating a low person-to-person infection risk. Animal data suggest that it is highly unlikely that vaccinated individuals would infect animals with recombinant virus vaccine or that rVSVΔG-ZEBOV-GP would spread within animal populations. Preclinical studies in various hematophagous insect vectors showed that these species were unable to transmit rVSVΔG-ZEBOV-GP. Pathogenicity risk in humans and animals was found to be low, based on clinical and preclinical data. The overall risk for non-vaccinated individuals and the environment is thus negligible and can be minimized further through defined mitigation strategies. This ERA and the experience gained are relevant to developing other rVSV-based vaccines, including candidates under investigation for prevention of COVID-19

    Production and formulation of adenovirus vectors

    No full text
    Adenovirus vectors have attracted considerable interest over the past decade, with ongoing clinical development programs for applications ranging from replacement therapy for protein deficiencies to cancer therapeutics to prophylactic vaccines. Consequently, considerable product, process, analytical, and formulation development has been undertaken to support these programs. For example, "gutless" vectors have been developed in order to improve gene transfer capacity and durability of expression; new cell lines have been developed to minimize recombination events; production conditions have been optimized to improve volumetric productivities; analytical techniques and scaleable purification processes have advanced towards the goal of purified adenovirus becoming a "well-characterized biological"; and liquid formulations have been developed which maintain virus infectivity at 2-8\ub0C for over 18 months. These and other advances in the production of adenovirus vectors are discussed in detail in this review. In addition, the needs for the next decade are highlighted.NRC publication: Ye

    Development of Pandemic Vaccines: ERVEBO Case Study

    No full text
    Preventative vaccines are considered one of the most cost-effective and efficient means to contain outbreaks and prevent pandemics. However, the requirements to gain licensure and manufacture a vaccine for human use are complex, costly, and time-consuming. The 2013–2016 Ebola virus disease (EVD) outbreak was the largest EVD outbreak to date and the third Public Health Emergency of International Concern in history, so to prevent a pandemic, numerous partners from the public and private sectors combined efforts and resources to develop an investigational Zaire ebolavirus (EBOV) vaccine candidate (rVSVΔG-ZEBOV-GP) as quickly as possible. The rVSVΔG-ZEBOV-GP vaccine was approved as ERVEBOTM by the European Medicines Authority (EMA) and the United States Food and Drug Administration (FDA) in December 2019 after five years of development. This review describes the development program of this EBOV vaccine, summarizes what is known about safety, immunogenicity, and efficacy, describes ongoing work in the program, and highlights learnings applicable to the development of pandemic vaccines

    Current Strategies in the non-clinical safety assessment of biologics: New Targets, New Molecules, New Challenges (A report of the 2016 Annual US BioSafe General Membership meeting)

    No full text
    Nonclinical safety testing of biopharmaceuticals can present significant challenges to human risk assessment with these innovative and often complex drugs. Emerging topics in this field were discussed recently at the 2016 Annual US BioSafe General Membership meeting. The presentations and subsequent discussions from the main sessions are summarized. The topics covered included: (i) specialty biologics (oncolytic virus, gene therapy, and gene editing based technologies), (ii) the value of non-human primates (NHPs) for safety assessment, (iii) challenges in the safety assessment of immuno-oncology drugs (T cell-dependent bispecifics, checkpoint inhibitors, and costimulatory agonists), (iv) emerging therapeutic approaches and modalities focused on microbiome, oligonucleotide, messenger ribonucleic acid (mRNA) therapeutics, (v) first in human (FIH) dose selection and the minimum anticipated biological effect level (MABEL), (vi) an update on current regulatory guidelines, International Conference on Harmonization (ICH) S1, S3a, S5, S9 and S11and (vii) breakout sessions that focused on bioanalytical and PK/PD challenges with bispecific antibodies, cytokine release in nonclinical studies, determining adversity and NOAEL for biologics, the value of second species for toxicology assessment and what to do if there is no relevant toxicology species

    Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs

    Get PDF
    Substance abuse and addiction are the most costly of all the neuropsychiatric disorders. In the last decades, much progress has been achieved in understanding the effects of the drugs of abuse in the brain. However, efficient treatments that prevent relapse have not been developed. Drug addiction is now considered a brain disease, because the abuse of drugs affects several brain functions. Neurological impairments observed in drug addicts may reflect drug-induced neuronal dysfunction and neurotoxicity. The drugs of abuse directly or indirectly affect neurotransmitter systems, particularly dopaminergic and glutamatergic neurons. This review explores the literature reporting cellular and molecular alterations reflecting the cytotoxicity induced by amphetamines, cocaine and opiates in neuronal systems. The neurotoxic effects of drugs of abuse are often associated with oxidative stress, mitochondrial dysfunction, apoptosis and inhibition of neurogenesis, among other mechanisms. Understanding the mechanisms that underlie brain dysfunction observed in drug-addicted individuals may contribute to improve the treatment of drug addiction, which may have social and economic consequences.http://www.sciencedirect.com/science/article/B6SYS-4S50K2J-1/1/7d11c902193bfa3f1f57030572f7034
    corecore