2 research outputs found

    The physicochemical, microbiological, and organoleptic properties and antioxidant activities of cream cheeses fortified with dried curry leaves (Murraya koenigii L.) powder

    Get PDF
    We aimed to investigate the effects of dried curry leaves powder (CLP) incorporation on physicochemical, microbiological, antioxidant, and sensory properties of cream cheeses. Varying levels of CLP infusions (i.e., T1: 0% [control], T2: 0.15%, T3: 0.2%, and T4: 0.25%; w/w%) were stored for 10 days at 4 degrees C. Antioxidant properties were evaluated using total phenolic content, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging ability, and ferric reducing antioxidant power using in vitro assays. Total antioxidant capacity significantly (p < .05) increased with the increasing levels of CLP. Physicochemical and microbiological qualities were not significantly affected by the addition of CLP, indicating the suitability of using CLP without compromising the quality of cream cheese. Organoleptic properties were affected with CLP addition, where T3 had the highest scores for color, aroma, flavor, texture, and overall acceptability. The principal component analysis provides the holistic approach of studying the variation associated with cream cheeses and the overall relationship among studied parameters. This provides strong references for novel dairy products added with antioxidant-rich Murraya koenigii L. powder. The study also has merits to promote scientific knowledge concerning, and how the incorporation would influence the physicochemical, organoleptic, and microbiological properties of cream cheese to deliver the value-added or diversified product to emerging consumers

    Effect of TMR Briquettes on Milk Production, Nutrient Digestibility, and Manure Excretions of Dairy Cows in the Dry Zone of Sri Lanka

    No full text
    We showed previously that TMR briquettes made with a variety of forages and industrial by-products had higher crude protein and energy concentrations than the conventional diet including fresh-cut Guinea grass and commercial cattle pellet (CTL). The study objective was to determine to what extent the nutritional advantages of TMR briquettes would be translated into the milk production of dairy cows in the dry zone of Sri Lanka. Nine Jersey × Sahiwal cows were assigned to CTL or two TMR briquettes in a 3 × 3 Latin square design with three periods each including 14 d for production measurement and 7 d for total faeces and urine collection. The TMR briquettes tended to increase milk yield (5.55 to 6.59 kg/d, p = 0.092), milk protein yield (0.170 vs. 0.203 kg/d, p = 0.091) and DMI (6.50 to 7.16 kg/d, p = 0.070), and decreased milk urea nitrogen (13.0 to 10.5 mg/dL, p p p = 0.149). In conclusion, the TMR briquettes can improve forage digestibility, milk production and environmental sustainability of dairy cows in the dry zone of Sri Lanka
    corecore