21 research outputs found

    Thermal expansion of irradiated polypropylene from 10-340 K

    No full text
    The coefficient of thermal expansion of gamma-irradiated polypropylene (PP) has been measured from 10-340 K by using the three-terminal capacitance technique. The samples were irradiated to 500 Mrad in air at room temperature with gamma rays from a 60Co^{60}Co source at a dose rate of 0.26 Mrad h1h ^{-1}. The crystallinity of the sample was measured by X-ray diffraction technique. The crystallinity was found to decrease with radiation dose from 55% at 0 Mrad to 44.7% at 500 Mrad. The thermal expansion coefficient was found to be almost constant with radiation dose from 10-125 K and decreases with radiation dose from 125-34O K

    Thermal expansion of gamma irradiated nylon 66 from 10 K to 340 K

    No full text
    Study of the thermal properties of irradiated poly-mers is very important from both a scientific and a technological point of view. Very little information is available on the thermal properties of irradiated polymers. Thermal expansion of technologically important irradiated polymers was measured by Subramanyam and colleagues [1-3]. Here we have made an attempt to measure the thermal expansion of gamma irradiated nylon 66 from 10 K to 340 K

    Thermal expansion of irradiated polyvinyl chloride from 10 K to 340 K

    No full text
    The coefficient of thermal expansion is measured for irradiated Polyvinyl Chloride (PVC) from 10K to 340K. The samples of PVC are irradiated, up to 500 Mrad in steps of 100 Mrad, in air at room temperature by using Co gamma rays with a dose rate of 0.3 Mrad/h. The PVC is an amorphous sample which is confirmed by X-ray diffraction. The coefficient of thermal expansion is found to decrease with radiation dose from 10K to 110K and it increaseswith radiation dose from 110K to 340K. The results are explained on the basis of radiation induced degradation of the sample

    Thermal expansion of irradiated nylon-6 from 10 K to 340 K

    No full text
    Thermal expansion of irradiated nylon-6 has been studied in the temperature range 10 to 340 K using a three-terminal capacitance bridge technique. Irradiation is carried out using cobalt-60 gamma-rays up to 500 Mrad dosage. Radiation enhances chain scission over crosslinking. alpha increases from 0 to 250 Mrad between 10 to 340 K and not much variation is observed between 250 to 500 Mrad for samples from 10 to 250 K

    Thermal Expansion of Irradiated Polyethylene from 10 to 340 K

    No full text
    The coefficient of thermal expansion of γ\gamma-irradiated polyethylene has been measured from 10 to 340 K by using the three-terminal capacitance technique. The samples are irradiated to 500 Mrad in steps of 100 Mrad in air at room temperature with γ\gamma-rays from a Co60Co^{60} source at a dose rate of 0.3 Mrad/h. The crystallinity of the sample is measured by x-ray diffraction. The crystallinity is found to decrease with radiation dose. The thermal expansion coefficient is found to be constant with radiation doses from 10 to 110 K and decreases with doses from 110 to 340 K

    High field electrical switching behavior of Ge10Se90-xTlx glasses

    No full text
    Electrical Switching Studies on bulk Ge10Se90-xTlx ( 15 <= x <= 34) glasses have been undertaken to examine the type of switching, composition and thickness dependence of switching voltages. Unlike Ge-Se-Tl thin films which exhibit memory switching, the bulk Ge10Se90-xTlx glasses are found to exhibit threshold type switching with fluctuations seen in their current-voltage (I-V) characteristics. Further, it is observed that the switching voltages (V-T) of Ge10Se90-xTlx glasses decrease with the increase in the Tl concentration. An effort has been made to understand the observed composition dependence on the basis of nature of bonding of Tl atoms and a decrease in the chemical disorder with composition. In addition. the network connectivity and metallicity factors also contribute for the observed decrease in the switching voltages of Ge10Se90-xTlx glasses with Tl addition. It is also interesting to note that the composition dependence of switching voltages of Ge10Se90-xTlx glasses exhibit a small Cusp around the composition x = 22. which is understood on the basis of a thermally reversing window in this system in the composition range 22 <= x <= 30. The thickness dependence of switching voltages has been found to provide an insight about the type of switching mechanism involved in these samples. (C) 2009 Elsevier B.V. All rights reserve

    Evidence of an intermediate phase in ternary Ge7Se93-xSbx glasses

    No full text
    The compositional dependence of thermal properties, such as glass transition temperature (T-g), non-reversing enthalpy change (Delta H-NR) and the specific heat capacity change (Delta C-p) of melt quenched Ge7Se93-xSbx (21 a parts per thousand currency sign x a parts per thousand currency sign 31) glasses, has been studied using alternating differential scanning calorimetry (ADSC) which is analogous to modulated differential scanning calorimetry (MDSC). The glass transition temperature, T-g, which is a measure of global connectivity of the glass, has been found to increase with the addition of Sb. In addition, a change in slope has been observed in the composition dependence of T-g at an average coordination aOE (c) r &gt; = 2.40. The experimentally observed compositional variation of glass transition temperature, has been compared with the theoretical predictions from the stochastic agglomeration theory (SAT) and has been found to be consistent. Further, a narrow thermally reversing window is seen in the compositional variation of the relaxation enthalpy (Delta H-NR), which is centered around aOE (c) r &gt; = 2.40. The change in specific heat capacity (Delta C-p) at T-g is also found to exhibit a distinct minima at aOE (c) r &gt; = 2.40, suggesting that the structural rearrangements for the liquid in the glass transition region are minimized around aOE (c) r &gt; = 2.4

    The composition dependence of electrical switching behavior of Ge7Se93-xSbx glasses

    No full text
    Bulk Ge7Se93-xSbx (21 &lt;= x &lt;= 32) glasses are prepared by melt quenching method and electrical switching studies have been undertaken on these samples to elucidate the type of switching and the composition and thickness dependence of switching voltages. On the basis of the compressibility and atomic radii, it has been previously observed that Se-based glasses exhibit memory switching behavior. However, the present results indicate that Ge7Se93-xSbx glasses exhibit threshold type electrical switching with high switching voltages. Further, these samples are found to show fluctuations in the current-voltage (I-V) characteristics. The observed threshold behavior of Ge7Se93-xSbx glasses has been understood on the basis of larger atomic radii and lesser compressibilities of Sb and Ge. Further. the high switching voltages and fluctuations in the I-V characteristics of Ge-Se-Sb samples can be attributed to the high resistance of the samples and the difference in thermal conductivities of different structural units constituting the local structure of these glasses. The switching voltages of Ge7Se93-xSbx glasses have been found to decrease with the increase in the Sb concentration. The observed composition dependence of switching voltages has been understood on the basis of higher metallicity of the Sb additive and also in the light of the Chemically Ordered Network (CON) model. Further, the thickness dependence of switching voltages has been studied to reassert the mechanism of switching

    Synthesis, characterization and low temperature electrical conductivity of Polyaniline/NiFe2O4 nanocomposites

    No full text
    Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity sigma(RT) decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour

    Synthesis and characterization of magnetic and conductive nickel ferrite-polyaniline nanocomposites

    No full text
    Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline due to its wide application in different fields. In the present work nickel ferrite nanoparticles were prepared by sol-gel citrate-nitrate method. Polyaniline/nickel ferrite nanocomposites were synthesized by a simple general and inexpensive in-situ polymerization in the presence of nickel ferrite nanoparticles. The effects of nickel ferrite nanoparticles on the DC-electrical and magnetic properties of polyaniline were investigated. The structural, morphological and thermal stability of nanocomposites were characterized by X-ray diffraction, FTIR, scanning electron micrograph and TGA. The DC conductivity of polyaniline/nickel ferrite nanocomposites have been measured as a function of temperature in the range of 80K to 300K. The magnetic properties of the nanocomposites were measured using vibrating sample magnetometer in the temperature range 300-10K up to 30 kOe magnetic field
    corecore