41 research outputs found

    Innate Immune Responses to AAV Vectors

    Get PDF
    Gene replacement therapy by in vivo delivery of adeno-associated virus (AAV) is attractive as a potential treatment for a variety of genetic disorders. However, while AAV has been used successfully in many models, other experiments in clinical trials and in animal models have been hampered by undesired responses from the immune system. Recent studies of AAV immunology have focused on the elimination of transgene-expressing cells by the adaptive immune system, yet the innate immune system also has a critical role, both in the initial response to the vector and in prompting a deleterious adaptive immune response. Responses to AAV vectors are primarily mediated by the TLR9–MyD88 pathway, which induces the production of pro-inflammatory cytokines by activating the NF-κB pathways and inducing type I IFN production; self-complementary AAV vectors enhance these inflammatory processes. Additionally, the alternative NF-κB pathway influences transgene expression in cells transduced by AAV. This review highlights these recent discoveries regarding innate immune responses to AAV and discusses strategies to ablate these potentially detrimental signaling pathways

    Adeno-Associated Virus Serotype 6 Capsid Tyrosine-to-Phenylalanine Mutations Improve Gene Transfer to Skeletal Muscle

    Get PDF
    Adeno-associated viral (AAV) vectors are the most efficient in vivo gene transfer tools for gene therapy applications. Efforts have been made to translate encouraging results in small animal models to human patients. However, the need for large quantities of vector for clinical application remains a great challenge. Developing novel AAV vectors with enhanced infectivity may reduce the high vector dose requirement for many applications such as gene therapy for muscular dystrophy. Selective mutation of AAV capsid surface-exposed tyrosine (Y) is a novel strategy to improve transduction efficiency. AAV6 has been considered one of the most robust muscle gene delivery vehicles. Here, we hypothesize that AAV6 transduction efficiency can be further enhanced by mutating surface Y to phenylalanine (F). We found that mutants AAV6-Y445F and AAV6-Y731F, especially the former, achieved more efficient gene transfer than the original AAV6 after intramuscular administration to mice. Expression of both firefly luciferase and alkaline phosphatase reporter genes increased up to 8-fold and DNA copy numbers in muscle increased up to 6-fold. Our results suggest that tyrosine-mutant AAV6 vectors may represent powerful tools for testing muscle gene therapy in animal models and potentially in humans

    Enhanced Transgene Expression from Recombinant Single-Stranded D-Sequence-Substituted Adeno-Associated Virus Vectors in Human Cell Lines In Vitro and in Murine Hepatocytes In Vivo

    Get PDF
    ABSTRACT We have previously reported that the removal of a 20-nucleotide sequence, termed the D sequence, from both ends of the inverted terminal repeats (ITRs) in the adeno-associated virus serotype 2 (AAV2) genome significantly impairs rescue, replication, and encapsidation of the viral genomes (X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Mol Biol 250:573–580, 1995; X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Virol 70:1668–1677, 1996). Here we describe that replacement of only one D sequence in either ITR restores each of these functions, but DNA strands of only single polarity are encapsidated in mature progeny virions. Since most commonly used recombinant AAV vectors contain a single-stranded DNA (ssDNA), which is transcriptionally inactive, efficient transgene expression from AAV vectors is dependent upon viral second-strand DNA synthesis. We have also identified a transcription suppressor sequence in one of the D sequences, which shares homology with the binding site for the cellular NF-κB-repressing factor (NRF). The removal of this D sequence from, and replacement with a sequence containing putative binding sites for transcription factors in, single-stranded AAV (ssAAV) vectors significantly augments transgene expression both in human cell lines in vitro and in murine hepatocytes in vivo . The development of these genome-modified ssAAV vectors has implications not only for the basic biology of AAV but also for the optimal use of these vectors in human gene therapy. IMPORTANCE The results of the studies described here not only have provided novel insights into some of the critical steps in the life cycle of a human virus, the adeno-associated virus (AAV), that causes no known disease but have also led to the development of novel recombinant AAV vectors which are more efficient in allowing increased levels of gene expression. Thus, these studies have significant implications for the potential use of these novel AAV vectors in human gene therapy

    Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer

    No full text
    Of the 12 common serotypes used for gene delivery applications, Adeno-associated virus (AAV)rh.10 serotype has shown sustained hepatic transduction and has the lowest seropositivity in humans. We have evaluated if further modifications to AAVrh.10 at its phosphodegron like regions or predicted immunogenic epitopes could improve its hepatic gene transfer and immune evasion potential. Mutant AAVrh.10 vectors were generated by site directed mutagenesis of the predicted targets. These mutant vectors were first tested for their transduction efficiency in HeLa and HEK293T cells. The optimal vector was further evaluated for their cellular uptake, entry, and intracellular trafficking by quantitative PCR and time-lapse confocal microscopy. To evaluate their potential during hepatic gene therapy, C57BL/6 mice were administered with wild-type or optimal mutant AAVrh.10 and the luciferase transgene expression was documented by serial bioluminescence imaging at 14, 30, 45, and 72 days post-gene transfer. Their hepatic transduction was further verified by a quantitative PCR analysis of AAV copy number in the liver tissue. The optimal AAVrh.10 vector was further evaluated for their immune escape potential, in animals pre-immunized with human intravenous immunoglobulin. Our results demonstrate that a modified AAVrh.10 S671A vector had enhanced cellular entry (3.6 fold), migrate rapidly to the perinuclear region (1 vs. >2 h for wild type vectors) in vitro, which further translates to modest increase in hepatic gene transfer efficiency in vivo. More importantly, the mutant AAVrh.10 vector was able to partially evade neutralizing antibodies (~27–64 fold) in pre-immunized animals. The development of an AAV vector system that can escape the circulating neutralizing antibodies in the host will substantially widen the scope of gene therapy applications in humans

    MicroRNA-15b Modulates Molecular Mediators of Blood Induced Arthropathy in Hemophilia Mice

    No full text
    The development of arthropathy is a major co-morbidity in patients with hemophilia. The present study was designed to study the role of a microRNA biomarker (miR-15b) in the development of joint disease. To investigate the expression profile of miR-15b during the development of arthropathy, we first isolated and studied small RNA from the acute and chronic hemarthrosis model of hemophilia A mice. We observed that miR-15b was consistently repressed (~1- to 4-fold) from the onset of joint bleeding (1, 3, 7 and 24 h) until six bleeding episodes (up to 90 days). To test if reconstitution of miR-15b modulates biomarkers of joint damage in a chronic hemarthrosis model, we administered an adeno-associated virus (AAV) 5-miR-15b vector intra-articularly alone or in combination with systemic administration of AAV2-factor VIII. miR-15b overexpression downregulated markers of angiogenesis and hypoxia (vascular epithelial growth factor α (VEGF-α) and hypoxia inducing factor 2α (HIF-2α), ~70% and ~34%, respectively) in the affected joints. In addition, the co-administration of miR-15b and factor VIII vectors reduced the levels of the chondrodegenerative matrix-metalloproteinases (MMPs) 1, 3, 9 and 14 (~14% to 60%) in the injured joints. These data demonstrate for the first time the role of a miR-15b in the development of hemophilic arthropathy and has implications in development of miR based therapies for joint disease

    Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Get PDF
    The unfolded protein response (UPR) is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER). In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α), activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold) and PERK (up to 8 fold) genes 12-48 hours after infection with self-complementary (sc)AAV2 but less prominent with single-stranded (ss)AAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold) while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold) in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively). However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin) during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer

    Multiple molecular alterations in phosphodegrons 1-3 within AAV2 capsid demonstrates higher hepatic gene transfer efficiency

    No full text
    The success of AAV2 mediated hepatic gene transfer in human trials for diseases such as hemophilia has been hampered by a combination of low transduction efficiency and a robust immune response directed against these vectors. We have previously shown that AAV2 is targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of the serine(S)/threonine(T) kinase and lysine(K) targets on AAV capsid is beneficial. Thus targeted single mutations of S/T>A(S489A, S498A, T251A) and K>R (K532R) improved the efficiency of gene transfer in vivo as compared to wild type (WT)-AAV2 vectors (∼6-14 fold). In the present study, we evaluated if combined alteration of the phosphodegrons (PD), which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, improves further the gene transfer efficiency. Thus, we generated four multiple mutant vectors (PD: 1+3, S489A+K532R, PD: 1+3, S489A+K532R together with T251 residue which did not lie in any of the phosphodegrons but had shown increased transduction efficiency compared to the WT-AAV2 vector (∼6 fold) and was also conserved in 9 out of 10 AAV serotypes (AAV 1 to 10), PD: 1+3, S489A+K532R+S498A and a fourth combination of PD: 3, K532R+T251. We then evaluated them in vitro and in vivo and compared their gene transfer efficiency with either the WT-AAV2 or the best single mutant S489A-AAV2 vector. The novel multiple mutations on the AAV2 capsid did not affect the overall vector packaging efficiency. All the multiple AAV2 mutants showed superior transduction efficiency in HeLa cells in vitro when compared to either the WT (62-72% Vs 21%) or the single mutant S489A (62-72% Vs 50%) AAV2 vectors as demonstrated by FACS analysis (Fig. 1A). On hepatic gene transfer with 5x10^10 vgs per animal in C57BL/6 mice, all the multiple mutants showed increased transgene expression compared to either the WT-AAV2 (∼15-23 fold) or the S489A single mutant vector (∼2-3 fold) (Fig.1B and C). These novel multiple mutant AAV2 vectors also showed higher vector copy number in murine hepatocytes 4 weeks post transduction, as compared to the WT-AAV2 (∼5-6 Vs 1.4 vector copies/diploid genome) and further higher when compared to the single mutant S489A(∼5-6 fold Vs 3.8 fold) (Fig.1D). Further ongoing studies will demonstrate the therapeutic benefit of one or more of the multiple mutants vectors in preclinical models of hemophilia
    corecore