2 research outputs found

    A clinically relevant model of acute respiratory distress syndrome in human-size swine

    No full text
    Despite over 30 years of intensive research for targeted therapies, treatment of acute respiratory distress syndrome (ARDS) remains supportive in nature. With mortality upwards of 30%, a high-fidelity pre-clinical model of ARDS, on which to test novel therapeutics, is urgently needed. We used the Yorkshire breed of swine to induce a reproducible model of ARDS in human-sized swine to allow the study of new therapeutics, from both mechanistic and clinical standpoints. For this, animals were anesthetized, intubated and mechanically ventilated, and pH-standardized gastric contents were delivered bronchoscopically, followed by intravenous infusion of Escherichia coli-derived lipopolysaccharide. Once the ratio of arterial oxygen partial pressure (PaO(2)) to fractional inspired oxygen (F(I)O(2)) had decreased to <150, the animals received standard ARDS treatment for up to 48 h. All swine developed moderate to severe ARDS. Chest radiographs taken at regular intervals showed significantly worse lung edema after induction of ARDS. Quantitative scoring of lung injury demonstrated time-dependent increases in interstitial and alveolar edema, neutrophil infiltration, and mild to moderate alveolar membrane thickening. This pre-clinical model of ARDS in human-sized swine recapitulates the clinical, radiographic and histopathologic manifestations of ARDS, providing a tool to study therapies for this highly morbid lung disease

    Preclinical evidence for the role of stem/stromal cells in COPD

    No full text
    Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide and there are currently limited treatment options for these patients. The disease is characterized by a reduction in airflow due to chronic bronchitis, as well as airspace enlargement in the distal lung, resulting in a loss of surface area available for gas exchange. At end-stage disease, oxygen therapy and lung transplantation remain the only potential options. The disease is heterogeneous and both inflammatory cells as well as structural cells are thought to play a role in disease onset and progression. Pharmaceutical approaches are ineffective at reversing disease pathology and currently aim only to provide symptomatic relief. A recent area of investigation focuses on exogenous cell therapy, including stem cell administration, and its potential for directing lung regeneration. Cell therapies from a variety of sources, as well as cell-derived products such as extracellular vesicles, have recently shown efficacy in animal models of COPD, but early clinical trials have not yet shown efficacy. In this chapter, we discuss the different animal models of COPD as well as the studies which have been conducted to date with cell therapies. We conclude the chapter with a discussion regarding the limitations of current animal models and discuss potential areas for future study
    corecore