1,849 research outputs found

    The Horizon: A blended wing aircraft configuration design project, volume 3

    Get PDF
    The results of a study to design a High-Speed Civilian Transport (HSCT) using the blended wing-body configuration are presented. The HSCT is a Mach 2 to 5 transport aircraft designed to compete with current commercial aircraft. The subjects discussed are sizing, configuration, aerodynamics, stability and control, propulsion, performance, structures and pollution effects

    Towards Bridging the gap between Empirical and Certified Robustness against Adversarial Examples

    Full text link
    The current state-of-the-art defense methods against adversarial examples typically focus on improving either empirical or certified robustness. Among them, adversarially trained (AT) models produce empirical state-of-the-art defense against adversarial examples without providing any robustness guarantees for large classifiers or higher-dimensional inputs. In contrast, existing randomized smoothing based models achieve state-of-the-art certified robustness while significantly degrading the empirical robustness against adversarial examples. In this paper, we propose a novel method, called \emph{Certification through Adaptation}, that transforms an AT model into a randomized smoothing classifier during inference to provide certified robustness for â„“2\ell_2 norm without affecting their empirical robustness against adversarial attacks. We also propose \emph{Auto-Noise} technique that efficiently approximates the appropriate noise levels to flexibly certify the test examples using randomized smoothing technique. Our proposed \emph{Certification through Adaptation} with \emph{Auto-Noise} technique achieves an \textit{average certified radius (ACR) scores} up to 1.1021.102 and 1.1481.148 respectively for CIFAR-10 and ImageNet datasets using AT models without affecting their empirical robustness or benign accuracy. Therefore, our paper is a step towards bridging the gap between the empirical and certified robustness against adversarial examples by achieving both using the same classifier.Comment: An abridged version of this work has been presented at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems: https://aisecure-workshop.github.io/aml-iclr2021/papers/2.pd

    Indicators of Electric Power Instability from Satellite Observed Nighttime Lights

    Get PDF
    Electric power services are fundamental to prosperity and economic development. Disruptions in the electricity power service can range from minutes to days. Such events are common in many developing economies, where the power generation and delivery infrastructure is often insufficient to meet demand and operational challenges. Yet, despite the large impacts, poor data availability has meant that relatively little is known about the spatial and temporal patterns of electric power reliability. Here, we explore the expressions of electric power instability recorded in temporal profiles of satellite observed surface lighting collected by the Visible Infrared Imaging Radiometer Suite (VIIRS) low light imaging day/night band (DNB). The nightly temporal profiles span from 2012 through to mid-2020 and contain more than 3000 observations, each from a total of 16 test sites from Africa, Asia, and North America. We present our findings in terms of various novel indicators. The preprocessing steps included radiometric adjustments designed to reduce variance due to the view angle and lunar illumination differences. The residual variance after the radiometric adjustments suggests the presence of a previously unidentified source of variability in the DNB observations of surface lighting. We believe that the short dwell time of the DNB pixel collections results in the vast under-sampling of the alternating current lighting flicker cycles. We tested 12 separate indices and looked for evidence of power instability. The key characteristic of lights in cities with developing electric power services is that they are quite dim, typically 5 to 10 times dimmer for the same population level as in Organization for Economic Co-operation and Development (OECD) countries. In fact, the radiances for developing cities are just slightly above the detection limit, in the range of 1 to 10 nanowatts. The clearest indicator for power loss is the percent outage. Indicators for supply adequacy include the radiance per person and the percent of population with detectable lights. The best indicator for load-shedding is annual cycling, which was found in more than half of the grid cells in two Northern India cities. Cities with frequent upward or downward radiance spikes can have anomalously high levels of variance, skew, and kurtosis. A final observation is that, barring war or catastrophic events, the year-on-year changes in lighting are quite small. Most cities are either largely stable over time, or are gradually increasing in indices such as the mean, variance, and lift, indicating a trajectory that proceeds across multiple years
    • …
    corecore