56 research outputs found

    Optical-fiber source of polarization-entangled photon pairs in the 1550nm telecom band

    Full text link
    We present a fiber based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1550nm band of standard fiber-optic telecommunications. Polarization entanglement is created by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed orthogonally-polarized pump pulses and subsequently removing the time distinguishability by passing the parametrically scattered signal-idler photon pairs through a piece of birefringent fiber. Coincidence detection of the signal-idler photons yields biphoton interference with visibility greater than 90%, while no interference is observed in direct detection of either the signal or the idler photons. All four Bell states can be prepared with our setup and we demonstrate violations of CHSH form of Bell's inequalities by up to 10 standard deviations of measurement uncertainty.Comment: 12 pages, 4 figures, to be submitted to Phys. Rev. Lett. See also paper QTuB4 in QELS'03 Technical Digest (OSA, Washington, D.C., 2003). This is a more complete versio

    Coherent resonant interactions and slow light with molecules confined in photonic band-gap fibers

    Full text link
    We investigate resonant nonlinear optical interactions and demonstrate induced transparency in acetylene molecules in a hollow-core photonic band-gap fiber at 1.5μ\mum. The induced spectral transmission window is used to demonstrate slow-light effects, and we show that the observed broadening of the spectral features is due to collisions of the molecules with the inner walls of the fiber core. Our results illustrate that such fibers can be used to facilitate strong coherent light-matter interactions even when the optical response of the individual molecules is weak.Comment: 5 pages, 4 figure

    Soliton Squeezing in a Mach-Zehnder Fiber Interferometer

    Get PDF
    A new scheme for generating amplitude squeezed light by means of soliton self-phase modulation is experimentally demonstrated. By injecting 180-fs pulses into an equivalent Mach-Zehnder fiber interferometer, a maximum noise reduction of 4.4±0.34.4 \pm 0.3 dB is obtained (6.3±0.66.3 \pm 0.6 dB when corrected for losses). The dependence of noise reduction on the interferometer splitting ratio and fiber length is studied in detail.Comment: 5 pages, 4 figure

    Compact Fiber-Parametric Devices for Biophotonics Applications

    No full text

    Slow Light: What we have learned and where are we going

    No full text

    Analysis of ultrashort pulsed FOPOs

    Full text link

    MURI Fellow on Quantum Information Technology: Entanglement, Teleportation, and Quantum Memory

    No full text
    corecore