3,562 research outputs found
Denitrification by sulfur-oxidizing bacteria in a eutrophic lake
Understanding the mechanistic controls of microbial denitrification is of central importance to both environmental microbiology and ecosystem ecology. Loss of nitrate (NO3 −) is often attributed to carbon-driven (heterotrophic) denitrification. However, denitrification can also be coupled to sulfur (S) oxidation by chemolithoautotrophic bacteria. In the present study, we used an in situ stable isotope (15NO3 −) tracer addition in combination with molecular approaches to understand the contribution of sulfur-oxidizing bacteria to the reduction of NO3 − in a eutrophic lake. Samples were incubated across a total dissolved sulfide (H2S) gradient (2 to 95 μM) between the lower epilimnion and the upper hypolimnion. Denitrification rates were low at the top of the chemocline (4.5 m) but increased in the deeper waters (5.0 and 5.5 m), where H2S was abundant. Concomitant with increased denitrification at depths with high sulfide was the production of sulfate (SO4 2−), suggesting that the added NO3 − was used to oxidize H2S to SO4 2−. Alternative nitrate removal pathways, including dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox), did not systematically change with depth and accounted for 1 to 15% of the overall nitrate loss. Quantitative PCR revealed that bacteria of the Sulfurimonas genus that are known denitrifiers increased in abundance in response to NO3 − addition in the treatments with higher H2S. Stoichiometric estimates suggest that H2S oxidation accounted for more than half of the denitrification at the depth with the highest sulfide concentration. The present study provides evidence that microbial coupling of S and nitrogen (N) cycling is likely to be important in eutrophic freshwater ecosystems
A point process framework for modeling electrical stimulation of the auditory nerve
Model-based studies of auditory nerve responses to electrical stimulation can
provide insight into the functioning of cochlear implants. Ideally, these
studies can identify limitations in sound processing strategies and lead to
improved methods for providing sound information to cochlear implant users. To
accomplish this, models must accurately describe auditory nerve spiking while
avoiding excessive complexity that would preclude large-scale simulations of
populations of auditory nerve fibers and obscure insight into the mechanisms
that influence neural encoding of sound information. In this spirit, we develop
a point process model of the auditory nerve that provides a compact and
accurate description of neural responses to electric stimulation. Inspired by
the framework of generalized linear models, the proposed model consists of a
cascade of linear and nonlinear stages. We show how each of these stages can be
associated with biophysical mechanisms and related to models of neuronal
dynamics. Moreover, we derive a semi-analytical procedure that uniquely
determines each parameter in the model on the basis of fundamental statistics
from recordings of single fiber responses to electric stimulation, including
threshold, relative spread, jitter, and chronaxie. The model also accounts for
refractory and summation effects that influence the responses of auditory nerve
fibers to high pulse rate stimulation. Throughout, we compare model predictions
to published physiological data and explain differences in auditory nerve
responses to high and low pulse rate stimulation. We close by performing an
ideal observer analysis of simulated spike trains in response to sinusoidally
amplitude modulated stimuli and find that carrier pulse rate does not affect
modulation detection thresholds.Comment: 1 title page, 27 manuscript pages, 14 figures, 1 table, 1 appendi
Evidence of Fragmenting Dust Particles from Near-Simultaneous Optical and Near-IR Photometry and Polarimetry of Comet 73P/Schwassmann-Wachmann 3
We report imaging polarimetry of segments B and C of the Jupiter-family Comet
73P/Schwassmann-Wachmann 3 in the I and H bandpasses at solar phase angles of
approximately 35 and 85deg. The level of polarization was typical for active
comets, but larger than expected for a Jupiter-family comet. The polarimetric
color was slightly red (dP/dL = +1.2 +/- 0.4) at a phase angle of ~ 35deg and
either neutral or slightly blue at a phase angle of ~ 85deg. Observations
during the closest approach from 2006 May 11-13 achieved a resolution of 35 km
at the nucleus. Both segments clearly depart from a 1/rho surface brightness
for the first 50 - 200 km from the nucleus. Simulations of radiation driven
dust dynamics can reproduce some of the observed coma morphology, but only with
a wide distribution of initial dust velocities (at least a factor of 10) for a
given grain radius. Grain aggregate breakup and fragmentation are able to
reproduce the observed profile perpendicular to the Sun-Comet axis, but fit the
observations less well along this axis (into the tail). The required
fragmentation is significant, with a reduction in the mean grain aggregate size
by about a factor of 10. A combination of the two processes could possibly
explain the surface brightness profile of the comet.Comment: 40 pages including 11 figure
Video Nasty: The Moral Apocalypse in Koji Suzuki’s Ring
Although overshadowed by its filmic adaptations (Hideo Nakata, 1998 and Gore Verbinski, 2002), Koji Suzuki’s novel Ring (1991) is at the heart of the international explosion of interest in Japanese horror. This article seeks to explore Suzuki’s overlooked text. Unlike the film versions, the novel is more explicitly focused on the line between self-preservation and self-sacrifice, critiquing the ease with which the former is privileged over the latter. In the novel then, the horror of Sadako’s curse raises questions about the terrors of moral obligation: the lead protagonist (Asakawa) projects the guilt he feels over his self-interested actions, envisaging them as an all-consuming apocalypse
Karakul Sheep.
20 p
Dust in Comet C/2007 N3 (Lulin)
We report optical imaging, optical and near-infrared polarimetry, and Spitzer
mid-infrared spectroscopy of comet C/2007 N3 (Lulin). Polarimetric observations
were obtained in R (0.676 micron) at phase angles from 0.44 degrees to 21
degrees with simultaneous observations in H (1.65 micron) at 4.0 degrees,
exploring the negative branch in polarization. Comet C/2007 N3 (Lulin) shows
typical negative polarization in the optical as well as a similar negative
branch near-infrared wavelengths. The 10 micron silicate feature is only weakly
in emission and according to our thermal models, is consistent with emission
from a mixture of silicate and carbon material. We argue that large,
low-porosity (akin to Ballistic Particle Cluster Aggregates) rather absorbing
aggregate dust particles best explain both the polarimetric and the
mid-infrared spectral energy distribution.Comment: 18 pages, 9 figures, 3 table
In-Space Structural Assembly: Applications and Technology
As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions
Integrating Evolutionary and Functional Tests of Adaptive Hypotheses: A Case Study of Altitudinal Differentiation in Hemoglobin Function in an Andean Sparrow, \u3ci\u3eZonotrichia capensis\u3c/i\u3e
In air-breathing vertebrates, the physiologically optimal blood-O2 affinity is jointly determined by the prevailing partial pressure of atmospheric O2, the efficacy of pulmonary O2 transfer, and internal metabolic demands. Consequently, genetic variation in the oxygenation properties of hemoglobin (Hb) may be subject to spatially varying selection in species with broad elevational distributions. Here we report the results of a combined functional and evolutionary analysis of Hb polymorphism in the rufouscollared sparrow (Zonotrichia capensis), a species that is continuously distributed across a steep elevational gradient on the Pacific slope of the Peruvian Andes. We integrated a population genomic analysis that included all postnatally expressed Hb genes with functional studies of naturally occurring Hb variants, as well as recombinant Hb (rHb) mutants that were engineered through site-directed mutagenesis. We identified three clinally varying amino acid polymorphisms: Two in the αA-globin gene, which encodes the α-chain subunits of the major HbA isoform, and one in the αD-globin gene, which encodes the α-chain subunits of the minor HbD isoform. We then constructed and experimentally tested single- and double-mutant rHbs representing each of the alternative αA-globin genotypes that predominate at different elevations. Although the locusspecific patterns of altitudinal differentiation suggested a history of spatially varying selection acting on Hb polymorphism, the experimental tests demonstrated that the observed amino acid mutations have no discernible effect on respiratory properties of the HbA or HbD isoforms. These results highlight the importance of experimentally validating the hypothesized effects of genetic changes in protein function to avoid the pitfalls of adaptive storytelling
Recommended from our members
The boomerang returns? Accounting for the impact of uncertainties on the dynamics of remanufacturing systems
Recent years have witnessed companies abandon traditional open-loop supply chain structures in favour of closed-loop variants, in a bid to mitigate environmental impacts and exploit economic opportunities. Central to the closed-loop paradigm is remanufacturing: the restoration of used products to useful life. While this operational model has huge potential to extend product life-cycles, the collection and recovery processes diminish the effectiveness of existing control mechanisms for open-loop systems. We systematically review the literature in the field of closed-loop supply chain dynamics, which explores the time-varying interactions of material and information flows in the different elements of remanufacturing supply chains. We supplement this with further reviews of what we call the three ‘pillars’ of such systems, i.e. forecasting, collection, and inventory and production control. This provides us with an interdisciplinary lens to investigate how a ‘boomerang’ effect (i.e. sale, consumption, and return processes) impacts on the behaviour of the closed-loop system and to understand how it can be controlled. To facilitate this, we contrast closed-loop supply chain dynamics research to the well-developed research in each pillar; explore how different disciplines have accommodated the supply, process, demand, and control uncertainties; and provide insights for future research on the dynamics of remanufacturing systems
- …