75 research outputs found

    Whole genome sequencing enhances molecular diagnosis of primary ciliary dyskinesia

    Get PDF
    Background: Primary ciliary dyskinesia (PCD) is a genetic disorder affecting motile cilia. Most cases are inherited recessively, due to variants in &gt;50 genes that result in abnormal or absent motile cilia. This leads to chronic upper and lower airway disease, subfertility, and laterality defects. Given overlapping clinical features and genetic heterogeneity, diagnosis can be difficult and often occurs late. Of those tested an estimated 30% of genetically screened PCD patients still lack a molecular diagnosis. A molecular diagnosis allows for appropriate clinical management including prediction of phenotypic features correlated to genotype. Here, we aimed to identify how readily a genetic diagnosis could be made using whole genome sequencing (WGS) to facilitate identification of pathogenic variants in known genes as well as novel PCD candidate genes. Methods: WGS was used to screen for pathogenic variants in eight patients with PCD. Results: 7/8 cases had homozygous or biallelic variants in DNAH5, DNAAF4 or DNAH11 classified as pathogenic or likely pathogenic. Three identified variants were deletions, ranging from 3 to 13 kb, for which WGS identified precise breakpoints, permitting confirmation by Sanger sequencing. WGS yielded identification of a de novo variant in a novel PCD gene TUBB4B. Conclusion: Here, WGS uplifted genetic diagnosis of PCD by identifying structural variants and novel modes of inheritance in new candidate genes. WGS could be an important component of the PCD diagnostic toolkit, increasing molecular diagnostic yield from current (70%) levels, and enhancing our understanding of fundamental biology of motile cilia and variants in the noncoding genome.</p

    Deciphering intrafamilial phenotypic variability by exome sequencing in a Bardet–Biedl family

    Get PDF
    Bardet–Biedl syndrome (BBS) is a model ciliopathy characterized by a wide range of clinical variability. The heterogeneity of this condition is reflected in the number of underlying gene defects and the epistatic interactions between the proteins encoded. BBS is generally inherited in an autosomal recessive trait. However, in some families, mutations across different loci interact to modulate the expressivity of the phenotype. In order to investigate the magnitude of epistasis in one BBS family with remarkable intrafamilial phenotypic variability, we designed an exome sequencing–based approach using SOLID 5500xl platform. This strategy allowed the reliable detection of the primary causal mutations in our family consisting of two novel compound heterozygous mutations in McKusick–Kaufman syndrome (MKKS) gene (p.D90G and p.V396F). Additionally, exome sequencing enabled the detection of one novel heterozygous NPHP4 variant which is predicted to activate a cryptic acceptor splice site and is only present in the most severely affected patient. Here, we provide an exome sequencing analysis of a BBS family and show the potential utility of this tool, in combination with network analysis, to detect disease-causing mutations and second-site modifiers. Our data demonstrate how next-generation sequencing (NGS) can facilitate the dissection of epistatic phenomena, and shed light on the genetic basis of phenotypic variability

    poRe:an R package for the visualization and analysis of nanopore sequencing data

    Get PDF
    Motivation: The Oxford Nanopore MinION device represents a unique sequencing technology. As a mobile sequencing device powered by the USB port of a laptop, the MinION has huge potential applications. To enable these applications, the bioinformatics community will need to design and build a suite of tools specifically for MinION data. Results: Here we present poRe, a package for R that enables users to manipulate, organize, summarize and visualize MinION nanopore sequencing data. As a package for R, poRe has been tested on Windows, Linux and MacOSX. Crucially, the Windows version allows users to analyse MinION data on the Windows laptop attached to the device. Availability and implementation: poRe is released as a package for R at http://sourceforge.net/projects/rpore/. A tutorial and further information are available at https://sourceforge.net/p/rpore/wiki/Home/ Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Genome sequencing with gene panel-based analysis for rare inherited conditions in a publicly funded healthcare system: implications for future testing

    Get PDF
    Acknowledgements This study would not be possible without the families, patients, clinicians, nurses, research scientists, laboratory staff, informaticians and the wider Scottish Genomes Partnership team to whom we give grateful thanks. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health). The Scottish Genomes Partnership was funded by the Chief Scientist Office of the Scottish Government Health Directorates (SGP/1) and The Medical Research Council Whole Genome Sequencing for Health and Wealth Initiative (MC/PC/15080). The 100,000 Genomes Project is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructure.Peer reviewedPublisher PD

    Genetic complexity of diagnostically unresolved Ehlers-Danlos syndrome

    Get PDF
    Background: The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. Methods: Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency (MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. Results: Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. Conclusions: We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways

    A Dominantly Inherited 5' UTR Variant Causing Methylation-Associated Silencing of BRCA1 as a Cause of Breast and Ovarian Cancer

    Get PDF
    Pathogenic variants in BRCA1 or BRCA2 are identified in ∼20% of families with multiple individuals affected by early-onset breast and/or ovarian cancer. Extensive searches for additional highly penetrant genes or alternative mutational mechanisms altering BRCA1 or BRCA2 have not explained the missing heritability. Here, we report a dominantly inherited 5′ UTR variant associated with epigenetic BRCA1 silencing due to promoter hypermethylation in two families affected by breast and ovarian cancer. BRCA1 promoter methylation of ten CpG dinucleotides in families who are affected by breast and/or ovarian cancer but do not have germline BRCA1 or BRCA2 pathogenic variants was assessed by pyrosequencing and clonal bisulfite sequencing. RNA and DNA sequencing of BRCA1 from lymphocytes was undertaken to establish allelic expression and the presence of germline variants. BRCA1 promoter hypermethylation was identified in 2 of 49 families in which multiple women are affected by grade 3 breast cancer or high-grade serous ovarian cancer. Soma-wide BRCA1 promoter hypermethylation was confirmed in blood, buccal mucosa, and hair follicles. Pyrosequencing showed that DNA was ∼50% methylated, consistent with the silencing of one allele, which was confirmed by clonal bisulfite sequencing. RNA sequencing revealed the allelic loss of BRCA1 expression in both families and that this loss of expression segregated with the heterozygous variant c.−107A&gt;T in the BRCA1 5′ UTR. Our results establish a mechanism whereby familial breast and ovarian cancer is caused by an in cis 5′ UTR variant associated with epigenetic silencing of the BRCA1 promoter in two independent families. We propose that methylation analyses be undertaken to establish the frequency of this mechanism in families affected by early-onset breast and/or ovarian cancer without a BRCA1 or BRCA2 pathogenic variant

    Pervasive lesion segregation shapes cancer genome evolution

    Get PDF
    Cancers arise through the acquisition of oncogenic mutations and grow through clonal expansion. Here we reveal that most mutagenic DNA lesions are not resolved as mutations within a single cell-cycle. Instead, DNA lesions segregate unrepaired into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterise this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multi-allelic and combinatorial genetic diversity. The phasing of lesions enables the accurate measurement of strand biased repair processes, quantification of oncogenic selection, and fine mapping of sister chromatid exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.This work was supported by: Cancer Research UK (20412, 22398), the European Research Council (615584, 682398), the Wellcome Trust (WT108749/Z/15/Z, WT106563/Z/14/A, WT202878/B/16/Z), the European Molecular Biology Laboratory, the MRC Human Genetics Unit core funding programme grants (MC_UU_00007/11, MC_UU_00007/16), and the ERDF/Spanish Ministry of Science, Innovation and Universities-Spanish State Research Agency/DamReMap Project (RTI2018-094095-B-I00)

    An actionable KCNH2 Long QT Syndrome variant detected by sequence and haplotype analysis in a population research cohort

    Get PDF
    The Viking Health Study Shetland is a population-based research cohort of 2,122 volunteer participants with ancestry from the Shetland Isles in northern Scotland. The high kinship and detailed phenotype data support a range of approaches for associating rare genetic variants, enriched in this isolate population, with quantitative traits and diseases. As an exemplar, the c.1750G > A; p.Gly584Ser variant within the coding sequence of the KCNH2 gene implicated in Long QT Syndrome (LQTS), which occurred once in 500 whole genome sequences from this population, was investigated. Targeted sequencing of the KCNH2 gene in family members of the initial participant confirmed the presence of the sequence variant and identified two further members of the same family pedigree who shared the variant. Investigation of these three related participants for whom single nucleotide polymorphism (SNP) array genotypes were available allowed a unique shared haplotype of 1.22 Mb to be defined around this locus. Searching across the full cohort for this haplotype uncovered two additional apparently unrelated individuals with no known genealogical connection to the original kindred. All five participants with the defined haplotype were shown to share the rare variant by targeted Sanger sequencing. If this result were verified in a healthcare setting, it would be considered clinically actionable, and has been actioned in relatives ascertained independently through clinical presentation. The General Practitioners of four study participants with the rare variant were alerted to the research findings by letters outlining the phenotype (prolonged electrocardiographic QTc interval). A lack of detectable haplotype sharing between c.1750G > A; p.Gly584Ser chromosomes from previously reported individuals from Finland and those in this study from Shetland suggests that this mutation has arisen more than once in human history. This study showcases the potential value of isolate population-based research resources for genomic medicine. It also illustrates some challenges around communication of actionable findings in research participants in this context.Peer reviewe
    corecore