227 research outputs found
Phase resolution limit in macroscopic interference between Bose-Einstein condensates
We study the competition between phase definition and quantum phase
fluctuations in interference experiments between independently formed Bose
condensates. While phase-sensitive detection of atoms makes the phase
progressively better defined, interactions tend to randomize it faster as the
uncertainty in the relative particle number grows. A steady state is reached
when the two effects cancel each other. Then the phase resolution saturates to
a value that grows with the ratio between the interaction strength and the atom
detection rate, and the average phase and number begin to fluctuate
classically. We discuss how our study applies to both recently performed and
possible future experiments.Comment: 4 pages, 5 figure
Non-destructive optical measurement of relative phase between two Bose condensates
We study the interaction of light with two Bose condensates as an open
quantum system. The two overlapping condensates occupy two different Zeeman
sublevels and two driving light beams induce a coherent quantum tunneling
between the condensates. We derive the master equation for the system. It is
shown that stochastic simulations of the measurements of spontaneously
scattered photons establish the relative phase between two Bose condensates,
even though the condensates are initially in pure number states. These
measurements are non-destructive for the condensates, because only light is
scattered, but no atoms are removed from the system. Due to the macroscopic
quantum interference the detection rate of photons depends substantially on the
relative phase between the condensates. This may provide a way to distinguish,
whether the condensates are initially in number states or in coherent states.Comment: 26 pages, RevTex, 8 postscript figures, 1 MacBinary eps-figur
Optical linewidth of a low density Fermi-Dirac gas
We study propagation of light in a Fermi-Dirac gas at zero temperature. We
analytically obtain the leading density correction to the optical linewidth.
This correction is a direct consequence of the quantum statistical correlations
of atomic positions that modify the optical interactions between the atoms at
small interatomic separations. The gas exhibits a dramatic line narrowing
already at very low densities.Comment: 4 pages, 2 figure
Measurements of Relative Phase in Binary Mixtures of Bose-Einstein Condensates
We have measured the relative phase of two Bose-Einstein condensates (BEC)
using a time-domain separated-oscillatory-field condensate interferometer. A
single two-photon coupling pulse prepares the double condensate system with a
well-defined relative phase; at a later time, a second pulse reads out the
phase difference accumulated between the two condensates. We find that the
accumulated phase difference reproduces from realization to realization of the
experiment, even after the individual components have spatially separated and
their relative center-of-mass motion has damped.Comment: 12 pages, 3 figure
Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity QED
Studies of ultracold atoms in optical lattices link various disciplines,
providing a playground where fundamental quantum many-body concepts, formulated
in condensed-matter physics, can be tested in much better controllable atomic
systems, e.g., strongly correlated phases, quantum information processing.
Standard methods to measure quantum properties of Bose-Einstein condensates
(BECs) are based on matter-wave interference between atoms released from traps
which destroys the system. Here we propose a nondestructive method based on
optical measurements, and prove that atomic statistics can be mapped on
transmission spectra of a high-Q cavity. This can be extremely useful for
studying phase transitions between Mott insulator and superfluid states, since
various phases show qualitatively distinct light scattering. Joining the
paradigms of cavity quantum electrodynamics (QED) and ultracold gases will
enable conceptually new investigations of both light and matter at ultimate
quantum levels, which only recently became experimentally possible. Here we
predict effects accessible in such novel setups.Comment: 6 pages, 3 figure
Dynamic depletion in a Bose condensate via a sudden increase of the scattering length
We examine the time-dependent quantum depletion of a trapped Bose condensate
arising from a rapid increase of the scattering length. Our solution indicates
that a significant buildup of incoherent atoms can occur within a
characteristic time short compared with the harmonic trap period. We discuss
how the depletion density and the characteristic time depend on the physical
parameters of the condensate
Talbot Oscillations and Periodic Focusing in a One-Dimensional Condensate
An exact theory for the density of a one-dimensional Bose-Einstein condensate
with hard core particle interactions is developed in second quantization and
applied to the scattering of the condensate by a spatially periodic impulse
potential. The boson problem is mapped onto a system of free fermions obeying
the Pauli exclusion principle to facilitate the calculation. The density
exhibits a spatial focusing of the probability density as well as a periodic
self-imaging in time, or Talbot effect. Furthermore, the transition from single
particle to many body effects can be measured by observing the decay of the
modulated condensate density pattern in time. The connection of these results
to classical and atom optical phase gratings is made explicit
Pumping two dilute gas Bose-Einstein condensates with Raman light scattering
We propose an optical method for increasing the number of atoms in a pair of
dilute gas Bose-Einstein condensates. The method uses laser-driven Raman
transitions which scatter atoms between the condensate and non-condensate atom
fractions. For a range of condensate phase differences there is destructive
quantum interference of the amplitudes for scattering atoms out of the
condensates. Because the total atom scattering rate into the condensates is
unaffected the condensates grow. This mechanism is analogous to that
responsible for optical lasing without inversion. Growth using macroscopic
quantum interference may find application as a pump for an atom laser.Comment: 4 pages, no figure
- …