2 research outputs found

    Evaluation of Soil Moisture-Based Satellite Precipitation Products over Semi-Arid Climatic Region

    No full text
    The ground validation of satellite-based precipitation products (SPPs) is very important for their hydroclimatic application. This study evaluated the performance assessment of four soil moisture-based SPPs (SM2Rain, SM2Rain- ASCAT, SM2Rain-CCI, and GPM-SM2Rain). All data of SPPs were compared with 64 weather stations in Pakistan from January 2005 to December 2020. All SPPs estimations were evaluated on daily, monthly, seasonal, and yearly scales, over the whole spatial domain, and at point-to-pixel scale. Widely used evaluation indices (root mean square error (RMSE), correlation coefficient (CC), bias, and relative bias (rBias)) along with categorical indices (false alarm ratio (FAR), probability of detection (POD), success ratio (SR), and critical success index (CSI) were evaluated for performance analysis. The results of our study signposted that: (1) On a monthly scale, all SPPs estimations were in better agreement with gauge estimations as compared to daily scales. Moreover, SM2Rain and GPM-SM2Rain products accurately traced the spatio-temporal variability with CC >0.7 and rBIAS within the acceptable range (±10) of the whole country. (2) On a seasonal scale (spring, summer, winter, and autumn), GPM-SM2Rain performed more satisfactorily as compared to all other SPPs. (3) All SPPs performed better at capturing light precipitation events, as indicated by the Probability Density Function (PDF); however, in the summer season, all SPPs displayed considerable over/underestimates with respect to PDF (%). Moreover, GPM-SM2RAIN beat all other SPPs in terms of probability of detection. Consequently, we suggest the daily and monthly use of GPM-SM2Rain and SM2Rain for hydro climate applications in a semi-arid climate zone (Pakistan)
    corecore