2,341 research outputs found

    Geometric Discord Of the Jaynes-Cummings Model: Pure Dephasing Regime

    Full text link
    In this paper, the dynamical behaviour of the geometric discord of a system consisting of a two-level atom interacting with a quantised radiation field described by the Jaynes-Cummings model has been studied. The evolution of the system has been considered in the pure dephasing regime when the field is initially in a general pure state and the atom is initially in a mixed state. Dynamics of the geometric discord, as a measure of non-classical correlation, has been compared with the dynamics of negativity, as a measure of quantum entanglement. In particular, the influence of different parameters of system such as detuning and mixedness of the initial atomic state on the dynamics of geometric discord has been evaluated for when the field is initially in coherent and number states. It is shown that for asymptotically large times, the steady state geometric discord of the system presents a non-zero optimum value at some intermediate value of detuning.Comment: 21 pages, 7 figures. appears in Eur. Phys. J. D 201

    The effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field

    Full text link
    The role of spin-orbit interaction on the ground state and thermal entanglement of a Heisenberg XYZ two-qubit system in the presence of an inhomogeneous magnetic field is investigated. For a certain value of spin-orbit parameter DD, the ground state entanglement tends to vanish suddenly and when DD crosses its critical value DcD_c, the entanglement undergoes a revival. The maximum value of the entanglement occurs in the revival region. In finite temperatures there are revival regions in DTD-T plane. In these regions, entanglement first increases with increasing temperature and then decreases and ultimately vanishes for temperatures above a critical value. This critical temperature is an increasing function of DD, thus the nonzero entanglement can exist for larger temperatures. In addition, the amount of entanglement in the revival region depends on the spin-orbit parameter. Also, the entanglement teleportation via the quantum channel constructed by the above system is investigated and finally the influence of the spin-orbit interaction on the fidelity of teleportation and entanglement of replica state is studied.Comment: Two columns, 9 pages, 8 Fig

    First-principles study of MoS2_2 and MoSe2_2 nanoclusters in the framework of evolutionary algorithm and density functional theory

    Full text link
    Evolutionary algorithm is combined with full-potential ab-initio calculations to investigate conformational space of (MoS2_2)n_n and (MoSe2_2)n_n (n=1-10) nanoclusters and to identify the lowest energy structural isomers of these systems. It is argued that within both BLYP and PBE functionals, these nanoclusters favor sandwiched planar configurations, similar to their ideal planar sheets. The second order difference in total energy (Δ2\Delta_2E) of the lowest energy isomers are computed to estimate the abundance of the clusters at different sizes and to determine the magic sizes of (MoS2_2)n_n and (MoSe2_2)n_n nanoclusters. In order to investigate the electronic properties of nanoclusters, their energy gap is calculated by several methods, including hybrid functionals (B3LYP and PBE0), GW approach, and Δ\Deltascf method. At the end, the vibrational modes of the lowest lying isomers are calculated by using the force constants method and the IR active modes of the systems are identified. The vibrational spectra are used to calculate the Helmholtz free energy of the systems and then to investigate abundance of the nanoclusters at finite temperatures.Comment: 6 figures; 3 table
    corecore