26 research outputs found

    Embodied perspective-taking indicated by selective disruption from aberrant self motion

    Get PDF
    Spatial perspective-taking that involves imagined changes in one’s spatial orientation is facilitated by vestibular stimulation inducing a congruent sensation of self-motion. We examined further the role of vestibular resources in perspective-taking by evaluating whether aberrant and conflicting vestibular stimulation impaired perspective-taking performance. Participants (N = 39) undertook either an “own body transformation” (OBT)task, requiring speeded spatial judgments made from the perspective of a schematic figure, or a control task requiring reconfiguration of spatial mappings from one’s own visuo-spatial perspective. These tasks were performed both without and with vestibular stimulation by whole-body Coriolis motion, according to a repeated measures design, balanced for order. Vestibular stimulation was found to impair performance during the first minute post stimulus relative to the stationary condition. This disruption was task-specific, affecting only the OBT task and not the control task, and dissipated by the second minute post-stimulus. Our experiment thus demonstrates selective temporary impairment of perspective-taking from aberrant vestibular stimulation, implying that uncompromised vestibular resources are necessary for efficient perspective-taking. This finding provides evidence for an embodied mechanism for perspective-taking whereby vestibular input contributes to multisensory processing underlying bodily and social cognition. Ultimately, this knowledge may contribute to the design of interventions that help patients suffering sudden vertigo adapt to the cognitive difficulties caused by aberrant vestibular stimulation

    Caloric vestibular stimulation modulates nociceptive evoked potentials

    Get PDF
    Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS and to 1 h after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated either by subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex
    corecore