973 research outputs found

    On the controversy concerning the definition of quark and gluon angular momentum

    Full text link
    A major controversy has arisen in QCD as to how to split the total angular momentum into separate quark and gluon contributions, and as to whether the gluon angular momentum can itself be split, in a gauge invariant way, into a spin and orbital part. Several authors have proposed various answers to these questions and offered a variety of different expressions for the relevant operators. I argue that none of these is acceptable and suggest that the canonical expression for the momentum and angular momentum operators is the correct and physically meaningful one. It is then an inescapable fact that the gluon angular momentum operator cannot, in general, be split in a gauge invariant way into a spin and orbital part. However, the projection of the gluon spin onto its direction of motion i.e. its helicity is gauge invariant and is measured in deep inelastic scattering on nucleons. The Ji sum rule, relating the quark angular momentum to generalized parton distributions, though not based on the canonical operators, is shown to be correct, if interpreted with due care. I also draw attention to several interesting aspects of QED and QCD, which, to the best of my knowledge, are not commented upon in the standard textbooks on Field Theory.Comment: 41 pages; Some incorrect statements have been rectified and a detailed discussion has been added concerning the momentum carried by quarks and the Ji sum rule for the angular momentu

    The lowest order inelastic QED processes at polarized photon-electron high energy collisions

    Full text link
    The compact expressions for cross sections of photoproduction of a pair of charged particles e+,e−\mathrm{e}^+,\mathrm{e}^-; μ+,μ−\mu^+,\mu^-; π+,π−\pi^+,\pi^- as well as the double Compton scattering process are given. The explicit analytic expressions for the case of polarized photon and the initial electron in the kinematics when all the particles can be considered as a massless ones are presented. The photon polarization is described in the terms of Stokes parameters.Comment: LaTeX2e, 9 page

    New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory

    Full text link
    There is a unique Lorentz-violating modification of the Maxwell theory of photons, which maintains gauge invariance, CPT, and renormalizability. Restricting the modified-Maxwell theory to the isotropic sector and adding a standard spin-one-half Dirac particle p^\pm with minimal coupling to the nonstandard photon \widetilde{\gamma}, the resulting modified-quantum-electrodynamics model involves a single dimensionless "deformation parameter," \widetilde{\kappa}_{tr}. The exact tree-level decay rates for two processes have been calculated: vacuum Cherenkov radiation p^\pm \to p^\pm \widetilde{\gamma} for the case of positive \widetilde{\kappa}_{tr} and photon decay \widetilde{\gamma} \to p^+ p^- for the case of negative \widetilde{\kappa}_{tr}. From the inferred absence of these decays for a particular high-quality ultrahigh-energy-cosmic-ray event detected at the Pierre Auger Observatory and an excess of TeV gamma-ray events observed by the High Energy Stereoscopic System telescopes, a two-sided bound on \widetilde{\kappa}_{tr} is obtained, which improves by eight orders of magnitude upon the best direct laboratory bound. The implications of this result are briefly discussed.Comment: 18 pages, v5: published version in preprint styl

    How state preparation can affect a quantum experiment: Quantum process tomography for open systems

    Full text link
    We study the effects of preparation of input states in a quantum tomography experiment. We show that maps arising from a quantum process tomography experiment (called process maps) differ from the well know dynamical maps. The difference between the two is due to the preparation procedure that is necessary for any quantum experiment. We study two preparation procedures, stochastic preparation and preparation by measurements. The stochastic preparation procedure yields process maps that are linear, while the preparations using von Neumann measurements lead to non-linear processes, and can only be consistently described by a bi-linear process map. A new process tomography recipe is derived for preparation by measurement for qubits. The difference between the two methods is analyzed in terms of a quantum process tomography experiment. A verification protocol is proposed to differentiate between linear processes and bi-linear processes. We also emphasize the preparation procedure will have a non-trivial effect for any quantum experiment in which the system of interest interacts with its environment.Comment: 13 pages, no figures, submitted to Phys. Rev.

    On the Localization of One-Photon States

    Get PDF
    Single photon states with arbitrarily fast asymptotic power-law fall-off of energy density and photodetection rate are explicitly constructed. This goes beyond the recently discovered tenth power-law of the Hellwarth-Nouchi photon which itself superseded the long-standing seventh power-law of the Amrein photon.Comment: 7 pages, tex, no figure

    Hepatic progenitor cells from adult human livers for cell transplantation.

    Get PDF
    Objective: Liver regeneration is mainly based on cellular self-renewal including progenitor cells. Efforts have been made to harness this potential for cell transplantation, but shortage of hepatocytes and premature differentiated progenitor cells from extra-hepatic organs are limiting factors. Histological studies implied that resident cells in adult liver can proliferate, have bipotential character and may be a suitable source for cell transplantation. Methods: Particular cell populations were isolated after adequate tissue dissociation. Single cell suspensions were purified by Thy-1 positivity selection, characterised in vitro and transplanted in immunodeficient Pfp/Rag2 mice. Results: Thy-1+ cells that are mainly found in the portal tract and the surrounding parenchyma, were isolated from surgical liver tissue with high yields from specimens with histological signs of regeneration. Thy-1+ cell populations were positive for progenitor (CD34, c-kit, CK14, M2PK, OV6), biliary (CK19) and hepatic (HepPar1) markers revealing their progenitor as well as hepatic and biliary nature. The potential of Thy-1+ cells for differentiation in vitro was demonstrated by increased mRNA and protein expression for hepatic (CK18, HepPar1) and biliary (CK7) markers during culture while progenitor markers CK14, chromogranin A and nestin were reduced. After transplantation of Thy-1+ cells into livers of immunodeficient mice, engraftment was predominantly seen in the periportal portion of the liver lobule. Analysis of in situ material revealed that transplanted cells express human hepatic markers HepPar1 and albumin, indicating functional engraftment. Conclusion: Bipotential progenitor cells from human adult livers can be isolated using Thy-1 and might be a potential candidate for cell treatment in liver diseases

    Two-Pion Exchange in Proton-Proton Scattering

    Get PDF
    The contribution of the box and crossed two-pion-exchange diagrams to proton-proton scattering at 90c.m.∘^{\circ}_{c.m.} is calculated in the laboratory momentum range up to 12 GeV/c. Relativistic form factors related to the nucleon and pion size and representing the pion source distribution based on the quark structure of the hadronic core are included at each vertex of the pion-nucleon interaction. These form factors depend on the four-momenta of the exchanged pions and scattering nucleons. Feynman-diagram amplitudes calculated without form factors are checked against those derived from dispersion relations. In this comparison, one notices that a very short-range part of the crossed diagram, neglected in dispersion-relation calculations of the two-pion-exchange nucleon-nucleon potential, gives a sizable contribution. In the Feynman-diagram calculation with form factors the agreement with measured spin-separated cross sections, as well as amplitudes in the lower part of the energy range considered, is much better for pion-nucleon pseudo-vector vis \`a vis pseudo-scalar coupling. While strengths of the box and crossed diagrams are comparable for laboratory momenta below 2 GeV/c, the crossed diagram dominates for larger momenta, largely due to the kinematics of the crossed diagram allowing a smaller momentum transfer in the nucleon center of mass. An important contribution arises from the principal-value part of the integrals which is non-zero when form factors are included. It seems that the importance of the exchange of color singlets may extend higher in energy than expected

    SOXE neofunctionalization and elaboration of the neural crest during chordate evolution

    Get PDF
    During chordate evolution, two genome-wide duplications facilitated acquisition of vertebrate traits, including emergence of neural crest cells (NCCs), in which neofunctionalization of the duplicated genes are thought to have facilitated development of craniofacial structures and the peripheral nervous system. How these duplicated genes evolve and acquire the ability to specify NC and their derivatives are largely unknown. Vertebrate SoxE paralogues, most notably Sox9/10, are essential for NC induction, delamination and lineage specification. In contrast, the basal chordate, amphioxus, has a single SoxE gene and lacks NC-like cells. Here, we test the hypothesis that duplication and divergence of an ancestral SoxE gene may have facilitated elaboration of NC lineages. By using an in vivo expression assay to compare effects of AmphiSoxE and vertebrate Sox9 on NC development, we demonstrate that all SOXE proteins possess similar DNA binding and homodimerization properties and can induce NCCs. However, AmphiSOXE is less efficient than SOX9 in transactivation activity and in the ability to preferentially promote glial over neuronal fate, a difference that lies within the combined properties of amino terminal and transactivation domains. We propose that acquisition of AmphiSoxE expression in the neural plate border led to NCC emergence while duplication and divergence produced advantageous mutations in vertebrate homologues, promoting elaboration of NC traits

    Novel surgical technique for complete traumatic rupture of the pancreas: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Complete pancreatic rupture is a rare injury. The typical mechanism by which this occurs is overstretching of the pancreas across the vertebral column during blunt abdominal trauma. The management of this injury depends on the location and extent of the injury.</p> <p>Case presentation</p> <p>A 45-year-old Caucasian woman presented with blunt abdominal trauma after she fell onto the end of a handlebar during a bicycle accident. She arrived in the emergency room with stable vital signs and an isolated bruise just above the umbilicus. A computed tomography scan revealed a complete rupture of the pancreas, just ventral to her superior mesenteric vein, and an accompanying hematoma but no additional injuries. An emergency laparotomy was performed; the head of the pancreas was oversewn with interrupted sutures and this was followed by a two-layer pancreaticojejunostomy with the tail of the pancreas. The recovery after surgery was completely uneventful.</p> <p>Conclusions</p> <p>Isolated complete pancreatic rupture is a rare injury that can be managed with complete organ preservation. The combination of suturing the pancreatic head and two-layer pancreaticojejunostomy with the pancreatic tail is a feasible technique to manage this condition.</p

    Quantization and noiseless measurements

    Full text link
    In accordance with the fact that quantum measurements are described in terms of positive operator measures (POMs), we consider certain aspects of a quantization scheme in which a classical variable f:R2→Rf:\R^2\to \R is associated with a unique positive operator measure (POM) EfE^f, which is not necessarily projection valued. The motivation for such a scheme comes from the well-known fact that due to the noise in a quantum measurement, the resulting outcome distribution is given by a POM and cannot, in general, be described in terms of a traditional observable, a selfadjoint operator. Accordingly, we notice that the noiseless measurements are the ones which are determined by a selfadjoint operator. The POM EfE^f in our quantization is defined through its moment operators, which are required to be of the form Γ(fk)\Gamma(f^k), k∈Nk\in \N, with Γ\Gamma a fixed map from classical variables to Hilbert space operators. In particular, we consider the quantization of classical \emph{questions}, that is, functions f:R2→Rf:\R^2\to\R taking only values 0 and 1. We compare two concrete realizations of the map Γ\Gamma in view of their ability to produce noiseless measurements: one being the Weyl map, and the other defined by using phase space probability distributions.Comment: 15 pages, submitted to Journal of Physics
    • …
    corecore