62 research outputs found

    Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML

    Get PDF
    BackgroundAcute myeloid leukemia (AML) is a hematological malignancy with a dismal prognosis. For over four decades, AML has primarily been treated by cytarabine combined with an anthracycline. Although a significant proportion of patients achieve remission with this regimen, roughly 40% of children and 70% of adults relapse. Over 90% of patients with resistant or relapsed AML die within 3 years. Thus, relapsed and resistant disease following treatment with standard therapy are the most common clinical failures that occur in treating this disease. In this study, we evaluated the relationship between AML cell line global metabolomes and variation in chemosensitivity.MethodsWe performed global metabolomics on seven AML cell lines with varying chemosensitivity to cytarabine and the anthracycline doxorubicin (MV4.11, KG-1, HL-60, Kasumi-1, AML-193, ME1, THP-1) using ultra-high performance liquid chromatography – mass spectrometry (UHPLC-MS). Univariate and multivariate analyses were performed on the metabolite peak intensity values from UHPLC-MS using MetaboAnalyst to identify cellular metabolites associated with drug chemosensitivity.ResultsA total of 1,624 metabolic features were detected across the leukemic cell lines. Of these, 187 were annotated to known metabolites. With respect to doxorubicin, we observed significantly greater abundance of a carboxylic acid (1-aminocyclopropane-1-carboxylate) and several amino acids in resistant cell lines. Pathway analysis found enrichment of several amino acid biosynthesis and metabolic pathways. For cytarabine resistance, nine annotated metabolites were significantly different in resistance vs. sensitive cell lines, including D-raffinose, guanosine, inosine, guanine, aldopentose, two xenobiotics (allopurinol and 4-hydroxy-L-phenylglycine) and glucosamine/mannosamine. Pathway analysis associated these metabolites with the purine metabolic pathway.ConclusionOverall, our results demonstrate that metabolomics differences contribute toward drug resistance. In addition, it could potentially identify predictive biomarkers for chemosensitivity to various anti-leukemic drugs. Our results provide opportunity to further explore these metabolites in patient samples for association with clinical response

    Exploration of CYP450 and drug transporter genotypes and correlations with nevirapine exposure in Malawians

    Get PDF
    Genetic polymorphisms have the potential to influence drug metabolism and vary among ethnic groups. This study evaluated the correlation of genetic polymorphisms with nevirapine pharmacokinetics exposure in Malawians

    Pharmacogenomics of osteonecrosis of the jaw

    Get PDF
    Osteonecrosis of the jaw (ONJ) is a rare but serious drug induced adverse event, mainly associated with the use of antiresorptive medications, such as intravenous (IV) bisphosphonates (BPs) in cancer patients. In this review, we evaluated all the pharmacogenomic association studies for ONJ published up to December 2018. To date, two SNPs (CYP2C8 rs1934951 and RBMS3 rs17024608) were identified to be associated with ONJ by two genome-wide association studies (GWAS). However, all six subsequent candidate gene studies failed to replicate these results. In addition, six discovery candidate gene studies tried to identify the genetic markers in several genes associated with bone remodeling, bone mineral density, or osteoporosis. After evaluating the results of these 6 studies, none of the SNPs was significantly associated with ONJ. Recently, two whole-exome sequencing (WES) analysis (including one from our group) were performed to identify variants associated with ONJ. So far, only our study successfully replicated discovery result indicating SIRT1 SNP rs7896005 to be associated with ONJ. However, this SNP also did not reach genome-wide significance. The major limitations of these studies include lack of replication phases and limited sample sizes. Even though some studies had larger sample sizes, they recruited healthy individuals as controls, not subjects treated with BPs. We conclude that a GWAS with a larger sample size followed by replication phase will be needed to fully investigate the pharmacogenomic markers of ONJ

    DNA Methylation Clusters and Their Relation to Cytogenetic Features in Pediatric AML

    No full text
    Acute Myeloid Leukemia (AML) is characterized by recurrent genetic and cytogenetic lesions that are utilized for risk stratification and for making treatment decisions. In recent years, methylation dysregulation has been extensively studied and associated with risk groups and prognosis in adult AML, however, such studies in pediatric AML are limited. Moreover, the mutations in epigenetic genes such as DNMT3A, IDH1 or IDH2 are almost absent or rare in pediatric patients as compared to their abundance in adult AML. In the current study, we evaluated methylation patterns that occur with or independent of the well-defined cytogenetic features in pediatric AML patients enrolled on multi-site AML02 clinical trial (NCT00136084). Our results demonstrate that unlike adult AML, cytosine DNA methylation does not result in significant unique clusters in pediatric AML, however, DNA methylation signatures correlated significantly with the most common and recurrent cytogenetic features. Paired evaluation of DNA methylation and expression identified genes and pathways of biological relevance that hold promise for novel therapeutic strategies. Our results further demonstrate that epigenetic signatures occur complimentary to the well-established chromosomal/mutational landscape, implying that dysregulation of oncogenes or tumor suppressors might be leveraging both genetic and epigenetic mechanisms to impact biological pathways critical for leukemogenesis

    Pharmacogenetics of the constitutive androstane receptor

    No full text
    • …
    corecore