3 research outputs found

    Discolouring 3D Gel Dosimeter for UV Dose Distribution Measurements

    No full text
    This work reports on a new TBO–Pluronic F–127 three-dimensional (3D) gel dosimeter for UV light dose distribution measurements. The optimal gel composition was found to be 60 µM Toluidine Blue O (TBO), which acts as a UV-sensitive compound; 5% w/w hydrogen peroxide (H2O2), which is necessary for initiation of TBO photodegradation and 25% w/w poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F–127), which forms a physical gel matrix. The dosimeter becomes discoloured when exposed to UV radiation and a discolouration is the more intense, the higher the absorbed dose is. The samples after irradiation with UVA, UVB and UVC radiation were measured using UV-Vis spectrophotometry to obtain the basic dose–response characteristic of the dosimeter, including dose sensitivity, linear and dynamic dose range, threshold dose, stability over time and dose–response for fractioned and non-fractioned doses. Additionally, the TBO–Pluronic F–127 gel dosimeter was investigated for spatial stability and the ability to measure the dose distribution of UV radiation. The results obtained indicate that the TBO–Pluronic F–127 dosimeter is a promising UV sensor and 2D/3D UV dosimeter

    NBT-Pluronic F-127 Hydrogels Printed on Flat Textiles as UV Radiation Sensors

    No full text
    This work reports on the surface-modified woven fabrics for use as UV radiation sensors. The cotton and polyamide fabrics were printed with radiochromic hydrogels using a screen-printing method. The hydrogels used as a printing paste were composed of water, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127) as a gel matrix and nitro blue tetrazolium chloride as a radiation-sensitive compound. The development of the hydrogels’ colour occurs after exposure to UV radiation and its intensity increases with increasing absorbed dose. The features of the NBT-Pluronic F-127 radiochromic hydrogels and the fabrics printed with the hydrogels were examined using UV-Vis and reflectance spectrophotometry as well as scanning electron microscopy (SEM). The effects of NBT concentration and UV radiation type (UVA, UVB, UVC) on dose responses of the hydrogels and printed fabrics were also examined. The results obtained reveal that the fabrics printed with NBT-Pluronic F-127 hydrogels can be potentially useful as UV radiation sensors
    corecore