459 research outputs found

    Duality and cosmological compactification of superstrings with unbroken supersymmetry

    Full text link
    The cosmological compactification of D=10, N=1 supergravity-super-Yang-Mills theory obtained from superstring theory is studied. The constraint of unbroken N=1 supersymmetry is imposed. A duality transformation is performed on the resulting consistency conditions. The original equations as well as the transformed equations are solved numerically to obtain new configurations with a nontrivial scale factor and a dynamical dilaton. It is shown that various classes of solutions are possible, which include cosmological solutions with no initial singularity.Comment: Latex2e file, 24 pages including 10 figures as tex file

    Observational constraints on low redshift evolution of dark energy: How consistent are different observations?

    Full text link
    The dark energy component of the universe is often interpreted either in terms of a cosmological constant or as a scalar field. A generic feature of the scalar field models is that the equation of state parameter w= P/rho for the dark energy need not satisfy w=-1 and, in general, it can be a function of time. Using the Markov chain Monte Carlo method we perform a critical analysis of the cosmological parameter space, allowing for a varying w. We use constraints on w(z) from the observations of high redshift supernovae (SN), the WMAP observations of CMB anisotropies and abundance of rich clusters of galaxies. For models with a constant w, the LCDM model is allowed with a probability of about 6% by the SN observations while it is allowed with a probability of 98.9% by WMAP observations. The LCDM model is allowed even within the context of models with variable w: WMAP observations allow it with a probability of 99.1% whereas SN data allows it with 23% probability. The SN data, on its own, favors phantom like equation of state (w<-1) and high values for Omega_NR. It does not distinguish between constant w (with w<-1) models and those with varying w(z) in a statistically significant manner. The SN data allows a very wide range for variation of dark energy density, e.g., a variation by factor ten in the dark energy density between z=0 and z=1 is allowed at 95% confidence level. WMAP observations provide a better constraint and the corresponding allowed variation is less than a factor of three. Allowing for variation in w has an impact on the values for other cosmological parameters in that the allowed range often becomes larger. (Abridged)Comment: 21 pages, PRD format (Revtex 4), postscript figures. minor corrections to improve clarity; references, acknowledgement adde

    Complementary Constraints on Brane Cosmology

    Full text link
    The acceleration of the expansion of the universe represents one of the major challenges to our current understanding of fundamental physics. In principle, to explain this phenomenon, at least two different routes may be followed: either adjusting the energy content of the Universe -- by introducing a negative-pressure dark energy -- or modifying gravity at very large scales -- by introducing new spatial dimensions, an idea also required by unification theories. In the cosmological context, the role of such extra dimensions as the source of the dark pressure responsable for the acceleration of our Universe is translated into the so-called brane world (BW) cosmologies. Here we study complementary constraints on a particular class of BW scenarios in which the modification of gravity arises due to a gravitational \emph{leakage} into extra dimensions. To this end, we use the most recent Chandra measurements of the X-ray gas mass fraction in galaxy clusters, the WMAP determinations of the baryon density parameter, measurements of the Hubble parameter from the \emph{HST}, and the current supernova data. In agreement with other recent results, it is shown that these models provide a good description for these complementary data, although a closed scenario is always favored in the joint analysis. We emphasize that observational tests of BW scenarios constitute a natural verification of the role of possible extra dimensions in both fundamental physics and cosmology.Comment: 6 Pages, 4 Figures, LaTe

    Parametrization of dark energy equation of state Revisited

    Full text link
    A comparative study of various parametrizations of the dark energy equation of state is made. Astrophysical constraints from LSS, CMB and BBN are laid down to test the physical viability and cosmological compatibility of these parametrizations. A critical evaluation of the 4-index parametrizations reveals that Hannestad-M\"{o}rtsell as well as Lee parametrizations are simple and transparent in probing the evolution of the dark energy during the expansion history of the universe and they satisfy the LSS, CMB and BBN constraints on the dark energy density parameter for the best fit values.Comment: 11 page

    Quantum phantom cosmology

    Full text link
    We apply the formalism of quantum cosmology to models containing a phantom field. Three models are discussed explicitly: a toy model, a model with an exponential phantom potential, and a model with phantom field accompanied by a negative cosmological constant. In all these cases we calculate the classical trajectories in configuration space and give solutions to the Wheeler-DeWitt equation in quantum cosmology. In the cases of the toy model and the model with exponential potential we are able to solve the Wheeler-DeWitt equation exactly. For comparison, we also give the corresponding solutions for an ordinary scalar field. We discuss in particular the behaviour of wave packets in minisuperspace. For the phantom field these packets disperse in the region that corresponds to the Big Rip singularity. This thus constitutes a genuine quantum region at large scales, described by a regular solution of the Wheeler-DeWitt equation. For the ordinary scalar field, the Big-Bang singularity is avoided. Some remarks on the arrow of time in phantom models as well as on the relation of phantom models to loop quantum cosmology are given.Comment: 21 pages, 6 figure

    Curvature driven acceleration : a utopia or a reality ?

    Full text link
    The present work shows that a combination of nonlinear contribution from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature.Comment: 8 pages, 4 figure

    Bayesian analysis of Friedmannless cosmologies

    Full text link
    Assuming only a homogeneous and isotropic universe and using both the 'Gold' Supernova Type Ia sample of Riess et al. and the results from the Supernova Legacy Survey, we calculate the Bayesian evidence of a range of different parameterizations of the deceleration parameter. We consider both spatially flat and curved models. Our results show that although there is strong evidence in the data for an accelerating universe, there is little evidence that the deceleration parameter varies with redshift.Comment: 7 pages, 3 figure

    Observational constraints on the dark energy density evolution

    Full text link
    We constrain the evolution of the dark energy density from Cosmic Microwave Background, Large Scale Structure and Supernovae Ia measurements. While Supernovae Ia are most sensitive to the equation of state w0w_0 of dark energy today, the Cosmic Microwave Background and Large Scale Structure data best constrains the dark energy evolution at earlier times. For the parametrization used in our models, we find w0<0.8w_0 < -0.8 and the dark energy fraction at very high redshift Ωearly<0.03\Omega_{early} < 0.03 at 95 per cent confidence level.Comment: 5 pages, 10 figure

    Legacy data and cosmological constraints from the angular-size/redshift relation for ultra-compact radio sources

    Get PDF
    We have re-examined an ancient VLBI survey of ultra-comact radio sources at 2.29 GHz, which gave fringe amplitudes for 917 such objects with total flux density >0.5 Jy approximately. A number of cosmological investigations based upon this survey have been published in recent years. We have updated the sample with respect to both redshift and radio information, and now have full data for 613 objects, significantly larger than the number (337) used in earlier investigations. The corresponding angular-size/redshift diagram gives Omega_m=0.25+0.04/-0.03, Omega_\Lambda=0.97+0.09/-0.13 and K=0.22+0.07/-0.10. In combination with supernova data, and a simple-minded approach to CMB data based upon the angular size of the acoustic horizon, our best figures are Omega_m=0.298+0.025/-0.024, Omega_\Lambda=0.702+0.035/-0.036 and K= 0.000+0.021/-0.019. We have examined simple models of dynamical vacuum energy; the first, based upon a scalar potential V(phi)=omega_C^2 phi^2/2, gives w(0)=-1.00+0.06/-0.00, (dw/dz)_0=+0.00/-0.08; in this case conditions at z=0 require particular attention, to preclude behaviour in which phi becomes singular as z -->infinity. For fixed w limits are w=-1.20+0.15/-0.14. The above error bars are 68% confidence limits.Comment: 24 pages, 9 figure
    corecore