15 research outputs found

    DNA microsatellite instability in hyperplastic polyps, serrated adenomas, and mixed polyps: a mild mutator pathway for colorectal cancer?

    No full text
    AIM: To investigate the distribution of DNA microsatellite instability (MSI) in a series of hyperplastic polyps, serrated adenomas, and mixed polyps of the colorectum. METHODS: DNA was extracted from samples of 73 colorectal polyps comprising tubular adenomas (23), hyperplastic polyps (21), serrated adenomas (17), and mixed polyps (12). The presence of MSI was investigated at six loci: MYCL, D2S123, F13B, BAT-40, BAT-26, and c-myb T22, using polymerase chain reaction based methodology. MSI cases were classified as MSI-Low (MSI-L) and MSI-High (MSI-H), based on the number of affected loci. RESULTS: The frequency of MSI increased in tubular adenomas (13%), hyperplastic polyps (29%), serrated adenomas (53%), and mixed polyps (83%) (Wilcoxon rank sum statistic, p < 0.001). Hyperplastic epithelium was present in nine of 12 mixed polyps and showed MSI in eight of these. MSI was mostly MSI-L. MSI-H occurred in two serrated adenomas and three mixed polyps. Clonal relations were demonstrated between hyperplastic and dysplastic epithelium in four of eight informative mixed polyps. CONCLUSIONS: The findings support the view that hyperplastic polyps may be fundamentally neoplastic rather than hyperplastic. A proportion of hyperplastic polyps may serve as a precursor of a subset (10%) of colorectal cancers showing the MSI-L phenotype, albeit through the intermediate step of serrated dysplasia. This represents a novel and distinct morphogenetic pathway for colorectal cancer

    Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways.

    No full text
    BACKGROUND: 10% of sporadic colorectal cancers are characterised by a low level of microsatellite instability (MSI-L). These are not thought to differ substantially from microsatelite-stable (MSS) cancers, but MSI-L and MSS cancers are distinguished clinicopathologically and in their spectrum of genetic alterations from cancers showing high level microsatellite instability (MSI-H). AIMS: To study the distribution of molecular alterations in a series of colorectal cancers stratified by DNA microsatellite instability. METHODS: A subset of an unselected series of colorectal cancers was grouped by the finding of DNA MSI at 0 loci (MSS) (n = 51), 1-2 loci (MSI-L) (n = 38) and 3-6 loci (MSI-H) (n = 25). The frequency of K-ras mutation, loss of heterozygosity (LOH) at 5q, 17p and 18q, and patterns of p53 and beta catenin immunohistochemistry was determined in the three groups. RESULTS: MSI-H cancers had a low frequency of K-ras mutation (7%), LOH on chromosomes 5q (0%), 17p (0%) and 18q (12.5%), and a normal pattern of immunostaining for p53 and beta catenin. MSI-L cancers differed from MSS cancers in terms of a higher frequency of K-ras mutation (54% v 27%) (p = 0.01) and lower frequency of 5q LOH (23% v 48%) (p = 0.047). Whereas aberrant beta catenin expression and 5q LOH were concordant (both present or both absent) in 57% of MSS cancers, concordance was observed in only 20% of MSI-L cancers (p = 0.01). CONCLUSIONS: MSI-L colorectal cancers are distinct from both MSI-H and MSS cancers. This subset combines features of the suppressor and mutator pathways, may be more dependent on K-ras than on the APC gene in the early stages of neoplastic evolution, and a proportion may be related histogenetically to the serrated (hyperplastic) polyp

    Delineating modern variation from extinct morphology in the fossil record using shells of the Eastern Box Turtle (Terrapene carolina)

    No full text
    corecore