45 research outputs found

    Charge exchange spectroscopy as a fast ion diagnostic on TEXTOR

    Get PDF
    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the D-alpha spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion D-alpha spectrum obtained with the new diagnostic is discussed

    Characterisation of detachment in the MAST-U Super-X divertor using multi-wavelength imaging of 2D atomic and molecular emission processes

    Get PDF
    In this work, we provide the first 2D spatially resolved description of radiative detachment in MAST-U Super-X L-mode divertor plasmas. The Super-X magnetic configuration was designed to achieve reduced heat- and particle loads at the divertor target compared to conventional exhaust solutions. We use filtered camera imaging to reconstruct 2D emissivity profiles in the poloidal plane for multiple atomic and molecular emission lines and bands. A set of deuterium fuelling scans is discussed that, together, span attached to deeply detached divertor states observed in MAST-U. Emissivity profiles facilitate separate analysis of locked-mode induced split branches of the scrape-off layer. Molecular deuterium Fulcher band emission front tracking reveals that the deuterium electron-impact ionisation front, for which it serves a proxy, detaches at different upstream electron densities in the split branches. Upon detachment of this ionisation front, Balmer emission attributed to molecular activated recombination appears near-target. We report a simultaneous radial broadening of the emission leg, consistent with previous SOLPS-ITER modelling. With increased fuelling this emission region detaches, implying electron temperatures below ∼ 1 eV. In this phase, 2D Balmer line ratio reconstruction indicates an onset of volumetric direct electron-ion recombination near-target. At the highest fuelling rates this emission region moves off-target, suggesting a drop in near-wall electron density accompanying the low temperatures.</p

    Plasma spectroscopy

    No full text
    A brief introduction into the spectroscopy of fusion plasmas is presented. Basic principles of the emission of ionic, atomic and molecular radiation is explained and a survey of the e??ects, which lead to the population of the respective excited levels, is given. Line radiation, continuum radiation, opacity and line broadening mechanisms are addressed. To access the cosre of a fusion reactor, active spectroscopic techniques have been developed, of which charge exchange recombination spectrosopy and Thomson scattering are treated in some detail

    Relativistic runaway electrons in tokamak plasmas

    Get PDF

    Fusenet : what can fusenet do for you

    No full text

    Thermonuclear burn criteria

    No full text
    After more than 50 years of fusion research the time has arrived when fusion processes in experimental plasmas are increasingly getting important. In JET the genuine fuel (deuterium-tritium) of a fusion reactor was used for the first time in late 1991, in TFTR the same happened in 1993, and in JET an extended period of experiments of this kind was performed in 1997. Therefore, it is getting more and more rewarding to deal with the problems related to the ignition and burning of plasmas
    corecore