71 research outputs found

    Reconstruction of Support of a Measure From Its Moments

    Full text link
    In this paper, we address the problem of reconstruction of support of a measure from its moments. More precisely, given a finite subset of the moments of a measure, we develop a semidefinite program for approximating the support of measure using level sets of polynomials. To solve this problem, a sequence of convex relaxations is provided, whose optimal solution is shown to converge to the support of measure of interest. Moreover, the provided approach is modified to improve the results for uniform measures. Numerical examples are presented to illustrate the performance of the proposed approach.Comment: This has been submitted to the 53rd IEEE Conference on Decision and Contro

    Convex Chance Constrained Model Predictive Control

    Full text link
    We consider the Chance Constrained Model Predictive Control problem for polynomial systems subject to disturbances. In this problem, we aim at finding optimal control input for given disturbed dynamical system to minimize a given cost function subject to probabilistic constraints, over a finite horizon. The control laws provided have a predefined (low) risk of not reaching the desired target set. Building on the theory of measures and moments, a sequence of finite semidefinite programmings are provided, whose solution is shown to converge to the optimal solution of the original problem. Numerical examples are presented to illustrate the computational performance of the proposed approach.Comment: This work has been submitted to the 55th IEEE Conference on Decision and Contro

    Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments

    Full text link
    In this paper, we address the risk estimation problem where one aims at estimating the probability of violation of safety constraints for a robot in the presence of bounded uncertainties with arbitrary probability distributions. In this problem, an unsafe set is described by level sets of polynomials that is, in general, a non-convex set. Uncertainty arises due to the probabilistic parameters of the unsafe set and probabilistic states of the robot. To solve this problem, we use a moment-based representation of probability distributions. We describe upper and lower bounds of the risk in terms of a linear weighted sum of the moments. Weights are coefficients of a univariate Chebyshev polynomial obtained by solving a sum-of-squares optimization problem in the offline step. Hence, given a finite number of moments of probability distributions, risk can be estimated in real-time. We demonstrate the performance of the provided approach by solving probabilistic collision checking problems where we aim to find the probability of collision of a robot with a non-convex obstacle in the presence of probabilistic uncertainties in the location of the robot and size, location, and geometry of the obstacle.Comment: 57th IEEE Conference on Decision and Control 201

    Real-Time Tube-Based Non-Gaussian Risk Bounded Motion Planning for Stochastic Nonlinear Systems in Uncertain Environments via Motion Primitives

    Full text link
    We consider the motion planning problem for stochastic nonlinear systems in uncertain environments. More precisely, in this problem the robot has stochastic nonlinear dynamics and uncertain initial locations, and the environment contains multiple dynamic uncertain obstacles. Obstacles can be of arbitrary shape, can deform, and can move. All uncertainties do not necessarily have Gaussian distribution. This general setting has been considered and solved in [1]. In addition to the assumptions above, in this paper, we consider long-term tasks, where the planning method in [1] would fail, as the uncertainty of the system states grows too large over a long time horizon. Unlike [1], we present a real-time online motion planning algorithm. We build discrete-time motion primitives and their corresponding continuous-time tubes offline, so that almost all system states of each motion primitive are guaranteed to stay inside the corresponding tube. We convert probabilistic safety constraints into a set of deterministic constraints called risk contours. During online execution, we verify the safety of the tubes against deterministic risk contours using sum-of-squares (SOS) programming. The provided SOS-based method verifies the safety of the tube in the presence of uncertain obstacles without the need for uncertainty samples and time discretization in real-time. By bounding the probability the system states staying inside the tube and bounding the probability of the tube colliding with obstacles, our approach guarantees bounded probability of system states colliding with obstacles. We demonstrate our approach on several long-term robotics tasks.Comment: International Conference on Intelligent Robots and Systems (IROS), 202

    Convex Risk Bounded Continuous-Time Trajectory Planning and Tube Design in Uncertain Nonconvex Environments

    Full text link
    In this paper, we address the trajectory planning problem in uncertain nonconvex static and dynamic environments that contain obstacles with probabilistic location, size, and geometry. To address this problem, we provide a risk bounded trajectory planning method that looks for continuous-time trajectories with guaranteed bounded risk over the planning time horizon. Risk is defined as the probability of collision with uncertain obstacles. Existing approaches to address risk bounded trajectory planning problems either are limited to Gaussian uncertainties and convex obstacles or rely on sampling-based methods that need uncertainty samples and time discretization. To address the risk bounded trajectory planning problem, we leverage the notion of risk contours to transform the risk bounded planning problem into a deterministic optimization problem. Risk contours are the set of all points in the uncertain environment with guaranteed bounded risk. The obtained deterministic optimization is, in general, nonlinear and nonconvex time-varying optimization. We provide convex methods based on sum-of-squares optimization to efficiently solve the obtained nonconvex time-varying optimization problem and obtain the continuous-time risk bounded trajectories without time discretization. The provided approach deals with arbitrary (and known) probabilistic uncertainties, nonconvex and nonlinear, static and dynamic obstacles, and is suitable for online trajectory planning problems. In addition, we provide convex methods based on sum-of-squares optimization to build the max-sized tube with respect to its parameterization along the trajectory so that any state inside the tube is guaranteed to have bounded risk.Comment: Accepted by IJRR (extension of RSS 2021 paper arXiv:2106.05489 invited to IJRR

    Non-Gaussian Uncertainty Minimization Based Control of Stochastic Nonlinear Robotic Systems

    Full text link
    In this paper, we consider the closed-loop control problem of nonlinear robotic systems in the presence of probabilistic uncertainties and disturbances. More precisely, we design a state feedback controller that minimizes deviations of the states of the system from the nominal state trajectories due to uncertainties and disturbances. Existing approaches to address the control problem of probabilistic systems are limited to particular classes of uncertainties and systems such as Gaussian uncertainties and processes and linearized systems. We present an approach that deals with nonlinear dynamics models and arbitrary known probabilistic uncertainties. We formulate the controller design problem as an optimization problem in terms of statistics of the probability distributions including moments and characteristic functions. In particular, in the provided optimization problem, we use moments and characteristic functions to propagate uncertainties throughout the nonlinear motion model of robotic systems. In order to reduce the tracking deviations, we minimize the uncertainty of the probabilistic states around the nominal trajectory by minimizing the trace and the determinant of the covariance matrix of the probabilistic states. To obtain the state feedback gains, we solve deterministic optimization problems in terms of moments, characteristic functions, and state feedback gains using off-the-shelf interior-point optimization solvers. To illustrate the performance of the proposed method, we compare our method with existing probabilistic control methods.Comment: International Conference on Intelligent Robots and Systems (IROS), 202
    • …
    corecore