92 research outputs found

    Strictinin: A Key Ingredient of Tea

    No full text
    Strictinin is a relatively tiny ellagitannin, which is found in many plants as a minor constituent. Catechins are known as the major constituents in the young leaves of most tea plants, while strictinin was found as a major constituent in the Pu’er tea plant. In some Pu’er tea varieties, strictinin was identified as the most abundant phenolic compound rather than catechins. In the past decade, strictinin was demonstrated to possess several functional activities, including antiviral, antibacterial, anti-obesity, laxative, anticaries, anti-allergic, antipsoriatic, antihyperuricemia, antidiabetic, and anticancer effects. These functional activities were in accordance with the therapeutic effects empirically perceived for Pu’er tea. Evidently, strictinin is the key ingredient in Pu’er tea that acts as a herbal medicine. In functionally-based applications, an instant powder of Pu’er tea infusion was formulated as an active raw material to be supplemented in food, cosmetics, and beverages; a new type of tea named Bitter Citrus Tzen Tea was developed by combining three teas empirically consumed to expel the cold, and new edible oral care products were designed for caries prevention by supplementation with Pu’er tea extract. More functional activities and practical applications of strictinin are scientifically anticipated in follow-up research

    The Potential Role of Phenolic Acids from <i>Salvia miltiorrhiza</i> and <i>Cynara scolymus</i> and Their Derivatives as JAK Inhibitors: An In Silico Study

    No full text
    JAK inhibition is a new strategy for treating autoimmune and inflammatory diseases. Previous studies have shown the immunoregulatory and anti-inflammatory effects of Salvia miltiorrhiza and Cynara scolymus and suggest that the bioactivity of their phenolic acids involves the JAK-STAT pathway, but it is unclear whether these effects occur through JAK inhibition. The JAK binding affinities obtained by docking Rosmarinic acid (RosA), Salvianolic acid A (SalA), Salvianolic acid C (SalC), Lithospermic acid, Salvianolic acid B and Cynarin (CY) to JAK (PDB: 6DBN) with AutoDock Vina are −8.8, −9.8, −10.7, −10.0, −10.3 and −9.7 kcal/mol, respectively. Their predicted configurations enable hydrogen bonding with the hinge region and N- and C-terminal lobes of the JAK kinase domain. The benzofuran core of SalC, the compound with the greatest binding affinity, sits near Leu959, such as Tofacitinib’s pyrrolopyrimidine. A SalC derivative with a binding affinity of −12.2 kcal/mol was designed while maintaining this relationship. The docking results show follow-up studies of these phenolic acids as JAK inhibitors may be indicated. Furthermore, derivatives of SalC, RosA, CY and SalA can yield better binding affinity or bioavailability scores, indicating that their structures may be suitable as scaffolds for the design of new JAK inhibitors

    The Potential Role of Phenolic Acids from Salvia miltiorrhiza and Cynara scolymus and Their Derivatives as JAK Inhibitors: An In Silico Study

    No full text
    JAK inhibition is a new strategy for treating autoimmune and inflammatory diseases. Previous studies have shown the immunoregulatory and anti-inflammatory effects of Salvia miltiorrhiza and Cynara scolymus and suggest that the bioactivity of their phenolic acids involves the JAK-STAT pathway, but it is unclear whether these effects occur through JAK inhibition. The JAK binding affinities obtained by docking Rosmarinic acid (RosA), Salvianolic acid A (SalA), Salvianolic acid C (SalC), Lithospermic acid, Salvianolic acid B and Cynarin (CY) to JAK (PDB: 6DBN) with AutoDock Vina are &minus;8.8, &minus;9.8, &minus;10.7, &minus;10.0, &minus;10.3 and &minus;9.7 kcal/mol, respectively. Their predicted configurations enable hydrogen bonding with the hinge region and N- and C-terminal lobes of the JAK kinase domain. The benzofuran core of SalC, the compound with the greatest binding affinity, sits near Leu959, such as Tofacitinib&rsquo;s pyrrolopyrimidine. A SalC derivative with a binding affinity of &minus;12.2 kcal/mol was designed while maintaining this relationship. The docking results show follow-up studies of these phenolic acids as JAK inhibitors may be indicated. Furthermore, derivatives of SalC, RosA, CY and SalA can yield better binding affinity or bioavailability scores, indicating that their structures may be suitable as scaffolds for the design of new JAK inhibitors

    The Potential Role of Cyclopeptides from <i>Pseudostellaria heterophylla</i>, <i>Linum usitatissimum</i> and <i>Drymaria diandra</i>, and Peptides Derived from Heterophyllin B as Dipeptidyl Peptidase IV Inhibitors for the Treatment of Type 2 Diabetes: An In Silico Study

    No full text
    Dipeptidyl peptidase 4 (DPP4) inhibitors can treat type 2 diabetes by slowing GLP-1 degradation to increase insulin secretion. Studies have reported that Pseudostellaria heterophylla, Linum usita-tissimum (flaxseed), and Drymaria diandra, plants rich in Caryophyllaceae-type cyclopeptides and commonly used as herbal or dietary supplements, are effective in controlling blood sugar. The active site of DPP4 is in a cavity large enough to accommodate their cyclopeptides. Molecular modeling by AutoDock Vina reveals that certain cyclopeptides in these plants have the potential for DPP4 inhibition. In particular, “Heterophyllin B” from P. heterophylla, “Cyclolinopeptide C” from flaxseed, and “Diandrine C” from D. diandra, with binding affinities of −10.4, −10.0, and −10.7 kcal/mol, are promising. Docking suggests that DPP4 inhibition may be one of the reasons why these three plants are beneficial for lowering blood sugar. Because many protein hydrolysates have shown the effect of DPP4 inhibition, a series of peptides derived from Heterophyllin B precursor “IFGGLPPP” were included in the study. It was observed that IFWPPP (−10.5 kcal/mol), IFGGWPPP (−11.4 kcal/mol), and IFGWPPP (−12.0 kcal/mol) showed good binding affinity and interaction for DPP4. Various IFGGLPPP derivatives have the potential to serve as scaffolds for the design of novel DPP4 inhibitors

    Investigating Potential GLP-1 Receptor Agonists in Cyclopeptides from Pseudostellaria heterophylla, Linum usitatissimum, and Drymaria diandra, and Peptides Derived from Heterophyllin B for the Treatment of Type 2 Diabetes: An In Silico Study

    No full text
    GLP-1 receptor agonists stimulate GLP-1R to promote insulin secretion, whereas DPP4 inhibitors slow GLP-1 degradation. Both approaches are incretin-based therapies for T2D. In addition to GLP-1 analogs, small nonpeptide GLP-1RAs such as LY3502970, TT-OAD2, and PF-06882961 have been considered as possible therapeutic alternatives. Pseudostellaria heterophylla, Linum usitatissimum, and Drymaria diandra are plants rich in cyclopeptides with hypoglycemic effects. Our previous study demonstrated the potential of their cyclopeptides for DPP4 inhibition. Reports of cyclic setmelanotide as an MC4R (GPCR) agonist and cyclic &alpha;-conotoxin chimeras as GLP-1RAs led to docking studies of these cyclopeptides with GLP-1R. Heterophyllin B, Pseudostellarin B, Cyclolinopeptide B, Cyclolinopeptide C, Drymarin A, and Diandrine C are abundant in these plants, with binding affinities of &minus;9.5, &minus;10.4, &minus;10.3, &minus;10.6, &minus;11.2, and &minus;11.9 kcal/mol, respectively. The configuration they demonstrated established multiple hydrogen bonds with the transmembrane region of GLP-1R. DdC:(cyclo)-GGPYWP showed the most promising docking score. The results suggest that, in addition to DPP4, GLP-1R may be a hypoglycemic target of these cyclopeptides. This may bring about more discussion of plant cyclopeptides as GLP-1RAs. Moreover, peptides derived from the HB precursor (IFGGLPPP), including IFGGWPPP, IFPGWPPP, IFGGYWPPP, and IFGYGWPPPP, exhibited diverse interactions with GLP-1R and displayed backbones available for further research

    Strictinin, a Major Ingredient in Yunnan Kucha Tea Possessing Inhibitory Activity on the Infection of Mouse Hepatitis Virus to Mouse L Cells

    No full text
    Theacrine and strictinin of Yunnan Kucha tea prepared from a mutant variety of wild Pu’er tea plants were two major ingredients responsible for the anti-influenza activity. As the COVID-19 outbreak is still lurking, developing safe and cost-effective therapeutics is an urgent need. This study aimed to evaluate the effects of these tea compounds on the infection of mouse hepatitis virus (MHV), a β-coronavirus serving as a surrogate for SARS-CoV. Treatment with strictinin (100 μM), but not theacrine, completely eliminated MHV infection, as indicated by a pronounced reduction in plaque formation, nucleocapsid protein expression, and progeny production of MHV. Subsequently, a time-of-drug addition protocol, including pre-, co-, or post-treatment, was exploited to further evaluate the possible mechanism of antiviral activity mediated by strictinin, and remdesivir, a potential drug for the treatment of SARS-CoV-2, was used as a positive control against MHV infection. The results showed that all three treatments of remdesivir (20 μM) completely blocked MHV infection. In contrast, no significant effect on MHV infection was observed when cells were pre-treated with strictinin (100 μM) prior to infection, while significant inhibition of MHV infection was observed when strictinin was introduced upon viral adsorption (co-treatment) and after viral entry (post-treatment). Of note, as compared with the co-treatment group, the inhibitory effect of strictinin was more striking in the post-treatment group. These results indicate that strictinin suppresses MHV infection by multiple mechanisms; it possibly interferes with viral entry and also critical step(s) of viral infection. Evidently, strictinin significantly inhibited MHV infection and might be a suitable ingredient for protection against coronavirus infection

    Molecular Identification and Characterization of Hydroxycinnamoyl Transferase in Tea Plants (<i>Camellia sinensis</i> L.)

    No full text
    Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways

    Strictinin, a Major Ingredient in Yunnan Kucha Tea Possessing Inhibitory Activity on the Infection of Mouse Hepatitis Virus to Mouse L Cells

    No full text
    Theacrine and strictinin of Yunnan Kucha tea prepared from a mutant variety of wild Pu&rsquo;er tea plants were two major ingredients responsible for the anti-influenza activity. As the COVID-19 outbreak is still lurking, developing safe and cost-effective therapeutics is an urgent need. This study aimed to evaluate the effects of these tea compounds on the infection of mouse hepatitis virus (MHV), a &beta;-coronavirus serving as a surrogate for SARS-CoV. Treatment with strictinin (100 &mu;M), but not theacrine, completely eliminated MHV infection, as indicated by a pronounced reduction in plaque formation, nucleocapsid protein expression, and progeny production of MHV. Subsequently, a time-of-drug addition protocol, including pre-, co-, or post-treatment, was exploited to further evaluate the possible mechanism of antiviral activity mediated by strictinin, and remdesivir, a potential drug for the treatment of SARS-CoV-2, was used as a positive control against MHV infection. The results showed that all three treatments of remdesivir (20 &mu;M) completely blocked MHV infection. In contrast, no significant effect on MHV infection was observed when cells were pre-treated with strictinin (100 &mu;M) prior to infection, while significant inhibition of MHV infection was observed when strictinin was introduced upon viral adsorption (co-treatment) and after viral entry (post-treatment). Of note, as compared with the co-treatment group, the inhibitory effect of strictinin was more striking in the post-treatment group. These results indicate that strictinin suppresses MHV infection by multiple mechanisms; it possibly interferes with viral entry and also critical step(s) of viral infection. Evidently, strictinin significantly inhibited MHV infection and might be a suitable ingredient for protection against coronavirus infection
    • …
    corecore