87 research outputs found

    HyperTuning: Toward Adapting Large Language Models without Back-propagation

    Full text link
    Fine-tuning large language models for different tasks can be costly and inefficient, and even methods that reduce the number of tuned parameters still require full gradient-based optimization. We propose HyperTuning, a novel approach to model adaptation that uses a hypermodel to generate task-specific parameters for a fixed downstream model. We demonstrate a simple setup for hypertuning with HyperT5, a T5-based hypermodel that produces soft prefixes or LoRA parameters for a frozen T5 model from few-shot examples. We train HyperT5 in two stages: first, hyperpretraining with a modified conditional language modeling objective that trains a hypermodel to generate parameters; second, multi-task fine-tuning (MTF) on a large number of diverse language tasks. We evaluate HyperT5 on P3, MetaICL and Super-NaturalInstructions datasets, and show that it can effectively generate parameters for unseen tasks. Moreover, we show that using hypermodel-generated parameters as initializations for further parameter-efficient fine-tuning improves performance. HyperTuning can thus be a flexible and efficient way to leverage large language models for diverse downstream applications

    Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data?

    Full text link
    Despite the remarkable capabilities of Large Language Models (LLMs) like GPT-4, producing complex, structured tabular data remains challenging. Our study assesses LLMs' proficiency in structuring tables and introduces a novel fine-tuning method, cognizant of data structures, to bolster their performance. We unveil Struc-Bench, a comprehensive benchmark featuring prominent LLMs (GPT-NeoX-20B, GPT-3.5, GPT-4, and Vicuna), which spans text tables, HTML, and LaTeX formats. Our proposed FormatCoT aids in crafting format-specific instructions from the intended outputs to populate this benchmark. Addressing the gap in task-centered evaluation, we propose two innovative metrics, P-Score (Prompting Score) and H-Score (Heuristical Score), to more accurately gauge LLM performance. Our experiments show that applying our structure-aware fine-tuning to LLaMA-7B leads to substantial performance gains, outshining its LLM counterparts across most measures. In-depth error analysis and creating an ability map across six dimensions -- coverage, formatting, reasoning, comprehension, pragmatics, and hallucination -- highlight areas for future enhancements and suggest forthcoming research trajectories. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench

    Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs

    Full text link
    Large language models (LLMs) have achieved widespread success on a variety of in-context few-shot tasks, but this success is typically evaluated via correctness rather than consistency. We argue that self-consistency is an important criteria for valid multi-step reasoning in tasks where the solution is composed of the answers to multiple sub-steps. We propose two types of self-consistency that are particularly important for multi-step reasoning -- hypothetical consistency (a model's ability to predict what its output would be in a hypothetical other context) and compositional consistency (consistency of a model's final outputs when intermediate sub-steps are replaced with the model's outputs for those steps). We demonstrate that multiple variants of the GPT-3/-4 models exhibit poor consistency rates across both types of consistency on a variety of tasks.Comment: Added GPT-4 result
    corecore