21 research outputs found
Water Movement through the Unsaturated Zone of the High Plains Aquifer in the Central Platte Natural Resources District, Nebraska, 2008-12
Uncertainty about the effects of land use and climate on water movement in the unsaturated zone and on groundwater recharge rates can lead to uncertainty in water budgets used for groundwater-flow models. To better understand these effects, a cooperative study between the United States Geological Survey (USGS) and the Central Platte Natural Resources District (CP NRD) was initiated in 2007 to determine field-based estimates of recharge rates in selected land-use areas of the CP NRD in Nebraska. Measured total water potential and unsaturated-zone profiles of tritium, chloride, nitrate as nitrogen, and bromide, along with groundwater-age dates, were used to evaluate water movement in the unsaturated zone and groundwater recharge rates in the central Platte River study area. Eight study sites represented an east-west precipitation contrast across the study area—four beneath groundwater-irrigated cropland (sites 2, 5, and 6 were irrigated corn and site 7 was irrigated alfalfa/corn rotation), three beneath rangeland (sites 1, 4, and 8), and one beneath nonirrigated cropland, or dryland (site 3).Measurements of transient vertical gradients in total water potential indicated that periodic wetting fronts reached greater mean maximum depths beneath the irrigated sites than beneath the rangeland sites, in part, because of the presence of greater and constant antecedent moisture. Beneath the rangeland sites, greater temporal variation in antecedent moisture and total water potential existed and was, in part, likely a result of local precipitation and evapotranspiration. Moreover, greater variability was noticed in the total water potential profiles beneath the western sites than the corresponding eastern sites, which was attributed to less mean annual precipitation in the west.The depth of the peak post-bomb tritium concentration or the interface between the pre-bomb/post-bomb tritium, along with a tritium mass balance, within sampled soil profiles were used to estimate water fluxes in the unsaturated zone at three of the eight study sites: site 2 (irrigated), site 3 (dryland), and site 8 (rangeland). Estimates for recharge were about 68 millimeters per year [(mm/yr), post-bomb peak], 133 to 159 mm/yr (tritium interface), and 137 mm/yr (mass balance) at site 2 (irrigated); about 63 mm/yr (tritium interface) and 12 mm/yr (mass balance) at site 3 (dryland); and about 53 mm/yr (tritium interface) and 10 mm/yr (mass balance) at site 8 (rangeland). Recharge values from the mass balance at site 2 were more than an order of magnitude greater than recharge values at site 3, suggesting irrigation is an important control on water movement through the unsaturated zone. For the remaining five sites, the post-bomb tritium had flushed through the system and recharge was considered modern (within 10 years of sampling).The chloride mass-balance method was used to determine water fluxes below the root zone (less than 2 meters below land surface) at the rangeland sites: sites 1, 4, and 8. At these rangeland sites, water fluxes ranged from 1.8 to 96 mm/yr at site 1, 1.1 to 9.6 mm/yr at site 4, and 1.1 to 68 mm/yr at site 8, with mean rates of 21, 4.3, and 13 mm/yr, respectively. Site 1 had a greater mean water flux, which was consistent with the greater precipitation in the east than at site 8 in the west. Chloride mass balance was not calculated at the irrigated and dryland sites because of uncertainty about additional sources of chloride.Concentrations of nitrate as nitrogen in pore water in the unsaturated zone were larger beneath the irrigated and dryland (agricultural) sites compared with the rangeland sites. The larger concentrations at the agricultural sites are consistent with the application of nitrogen fertilizer at the agricultural sites and no substantial accumulation at the rangeland sites. The shape of the nitrate as nitrogen and chloride concentration profiles at site 1 (rangeland) indicate a reasonably larger and more consistent water flux in the UZ than beneath the other two rangeland sites (sites 4 or 8). Excluding site 7, the general shape of the nitrate as nitrogen profiles was similar beneath the agricultural sites and supports the estimates of water movement and recharge rates determined from the tritium and chloride methods.Movement of bromide through the unsaturated zone indicated greater water fluxes are found beneath irrigated lands than beneath rangeland. Bromide profiles in the unsaturated zone, determined from center of mass and peak displacement methods, document water fluxes ranged from 58 to 394 mm/yr beneath irrigated sites and 9 to 201 mm/yr beneath rangeland sites. Water-flux estimates from the potassium bromide tests at most sites did not represent overall recharge rates because the bromide remained primarily in the root zone.Apparent groundwater age was used to determine the groundwater residence time at the eight sites and to estimate recharge rates. Groundwater ages in the study area ranged from old water (defined here as groundwater that was recharged more than 50 years ago) to modern (defined here as groundwater that has recharged within the past 10 years). Groundwater ages indicated that the shallow monitoring wells generally had younger residence times, whereas the deeper monitoring wells generally had the older residence times. Groundwater dates from the shallowest monitoring wells were used to determine recharge rates at the water table. These rates generally were similar to recharge rates determined from tritium and chloride mass-balance methods. Groundwater recharge rates generally increased with well depth, and the deeper monitoring wells likely do not represent local recharge conditions but recharge from a regional flow system that receives recharge from distant sources.Overall, these data generally indicate that water movement within the unsaturated zone primarily is affected by spatial contrasts in mean annual precipitation and by the land use or land cover. The eight unsaturated-zone sites each generated unique, valuable datasets that likely will improve the understanding of water movement and recharge rates in the central Platte River valley
Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA
Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains temperatures and future recharge rates in the east will resemble present recharge rates in the western part of the northern High Plains aquifer. The reductions in recharge rates could accelerate declining water levels if irrigation demand and other management strategies are not implemented. Findings here have important implications for future management of irrigation practices and to slow groundwater depletion in this important agricultural region
Groundwater response to climate variability in Mediterranean type climate zones with comparisons of California (USA) and Portugal
Aquifers are a fundamental source of freshwater, yet they are particularly vulnerable in coastal regions with Mediterranean type climate, due to both climatic and anthropogenic pressures. This comparative study examines the interrelationships between ocean-atmosphere teleconnections, groundwater levels and precipitation in coastal aquifers of California (USA) and Portugal. Piezometric and climate indices (1989-2019) are analyzed using singular spectral analysis and wavelet transform methods. Singular spectral analysis identifies signals consistent with the six dominant climate patterns: the Pacific Decadal Oscillation (PDO), the El Nino-Southern Oscillation (ENSO), and the Pacific/North American Oscillation (PNA) in California, and the North Atlantic Oscillation (NAO), the Eastern Atlantic Oscillation (EA) and the Scandinavian Pattern (SCAND) in Portugal. Lower-frequency oscillations have a greater influence on hydrologic patterns, with PDO (52.75%) and NAO (46.25%) on average accounting for the largest amount of groundwater level variability. Wavelet coherences show nonstationary covariability between climate patterns and groundwater levels in distinct period bands: 4-8 years for PDO, 2-4 years for ENSO, 1-2 years for PNA, 5-8 years for NAO, 2-4 years for EA and 2-8 years for SCAND. Wavelet coherence patterns also show that coupled climate patterns (NAO+ EA- and paired PDO and ENSO phases) are associated with major drought periods in both the Mediterranean climate zones.info:eu-repo/semantics/publishedVersio
Ground water and climate change
As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate
Climate Change Impacts on Groundwater and Dependent Ecosystems - in press
[EN] Aquifers and groundwater-dependent ecosystems (GDEs) are facing increasing pressure from water consumption, irrigation and climate change. These pressures modify groundwater levels and their temporal patterns and threaten vital ecosystem services such as arable land irrigation and ecosystem water requirements, especially during droughts. This review examines climate change effects on groundwater and dependent ecosystems. The mechanisms affecting natural variability in the global climate and the consequences of climate and land use changes due to anthropogenic influences are summarised based on studies from different hydrogeological strata and climate zones. The impacts on ecosystems are discussed based on current findings on factors influencing the biodiversity and functioning of aquatic and terrestrial ecosystems. The influence of changes to groundwater on GDE biodiversity and future threats posed by climate change is reviewed, using information mainly from surface water studies and knowledge of aquifer and groundwater ecosystems. Several gaps in research are identified. Due to lack of understanding of several key processes, the uncertainty associated with management techniques such as numerical modelling is high. The possibilities and roles of new methodologies such as indicators and modelling methods are discussed in the context of integrated groundwater resources management. Examples are provided of management impacts on groundwater, with recommendations on sustainable management of groundwaterThe preparation of this review was partly funded by EC 7th framework Project GENESIS (Contract Number 226536).Klove, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, JJ.; Kupfersberger, H.; Kværner, J.; Muotka, T.... (2014). Climate Change Impacts on Groundwater and Dependent Ecosystems - in press. Journal of Hydrology. 518(Part B):250-266. https://doi.org/10.1016/j.jhydrol.2013.06.037S250266518Part
Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado
In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements, discharges ranged from 82 cubic feet per second at Black Gore Creek near Minturn (U.S. Geological Survey station number 09066000) to 724 cubic feet per second at Gore Creek at mouth near Minturn (U.S. Geological Survey station number 09066510), whereas during the September traveltime measurements, discharges ranged from 3.6 cubic feet per second at Black Gore Creek near Minturn to 62 cubic feet per second at Gore Creek at mouth near Minturn. Cumulative traveltimes for the peak dye concentration during the May traveltime measurements ranged from 3.45 hours (site 1 to site 3) in Black Gore Creek to 2.50 hours (site 8 to site 12) in Gore Creek, whereas cumulative traveltimes for the peak dye concentration during the September traveltime measurements ranged from 15.33 hours (site 1 to site 3) in Black Gore Creek to 8.65 hours (site 8 to site 12) in Gore Creek. During the September dye injections, beaver dams on Black Gore Creek, between site 1 and the confluence with Gore Creek, substantially delayed movement of the rhodamine WT. Estimated traveltimes were developed using relations established from linear-regression methods of relating measured peak traveltime to discharge during those measurements, which were obtained at Black Gore Creek near Minturn and Gore Creek at mouth near Minturn. Resulting estimated peak traveltimes for Black Gore Creek (sites 1 to 5) ranged from 5.4 to 0.4 hour for 20 to 200 cubic feet per second and for Gore Creek (sites 5 to 12), 5.5 to 0.3 hour for 20 to 800 cubic feet per second. Longitudinal-dispersion coefficients that were calculated for selected stream reaches ranged from 17.2 square feet per second at 4 cubic feet per second between sites 2 and 3 to 650 square feet per second at 144 cubic feet per second between sites 7 and 8. Longitudinal-dispersion coefficients are necessary variables for future stream-contaminant modeling in the Gore Creek watershed
Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA
Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains temperatures and future recharge rates in the east will resemble present recharge rates in the western part of the northern High Plains aquifer. The reductions in recharge rates could accelerate declining water levels if irrigation demand and other management strategies are not implemented. Findings here have important implications for future management of irrigation practices and to slow groundwater depletion in this important agricultural region
Redox Dynamics and Oxygen Reduction Rates of Infiltrating Urban Stormwater beneath Low Impact Development (LID)
Low impact development (LID) best management practices (BMPs) collect, infiltrate, and treat stormwater runoff, and increase recharge to aquifers. Understanding the controls on reduction/oxidation (redox) conditions within LID BMPs is important for groundwater management because outflow from some LID BMPs can recharge aquifers and affect groundwater quality. Here we evaluate redox conditions of urban stormwater runoff in a LID infiltration trench in San Francisco, California, and quantify the relation between water saturation (%) and temperature (◦C) and resulting dissolved oxygen (DO) concentrations, redox dynamics, and O2 reduction rates. The DO fluctuations ha ve an inverse response to the duration of saturation of the trench. Anoxic (<0.5 mg/L) conditions often occurred within hours of stormwater events and persisted from a few hours to two days, which indicate that microbial respiration can be a limiting factor for DO. Temperature of stormwater runoff was not a statistically significant control on DO. The estimated O2 reduction rate is 0.003mg·L-1·min-1, which is two to five orders of magnitude higher than in groundwater from previous studies. Higher rates of O2 reduction are a function of the more toxic and organic-rich stormwater runoff that drives faster microbial O2 reduction. Our findings have important implications for the design of infiltration trenches and other LID BMPs to achieve desired redox conditions for infiltrating stormwater toward minimizing groundwater contamination
Latin Hypercube Approach to Estimate Uncertainty in Ground Water Vulnerability
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability