33 research outputs found
Recommended from our members
Onset Rivalry: The Initial Dominance Phase Is Independent Of Ongoing Perceptual Alternations
Binocular rivalry has been used to study a wide range of visual processes, from the integration of low-level features to the selection of signals that reach awareness. However, many of these studies do not distinguish between early and late phases of rivalry. There is clear evidence that the “onset” stage of rivalry is characterized by stable, yet idiosyncratic biases that are not evident in the average dominance of sustained rivalry viewing. Low-level stimulus features also have robust effects in the onset phase that are not seen in sustained rivalry, suggesting these phases may be driven at least partly by different neural mechanisms. The effects of high-level cognitive and affective factors at onset are less clear but also show differences from their effects in sustained viewing. These findings have important implications for the interpretation of any rivalry experiments using brief presentation paradigms and for understanding how the brain copes with binocular discrepancies in natural viewing conditions in which our eyes constantly move around an ever-changing environment. This review will summarize current research and explore the factors influencing this “onset” stage.Psycholog
The Importance of Ordinal Information in Interpreting Number/Letter Line Data
The degree to which the ability to mark the location of numbers on a number-to-position (NP) task reflects a mental number line (MNL) representation, or a representation that supports ordered lists more generally, is yet to be resolved. Some argue that findings from linear equation modeling, often used to characterize NP task judgments, support the MNL hypothesis. Others claim that NP task judgments reflect strategic processes; while others suggest the MNL proposition could be extended to include ordered list processing more generally. Insofar as the latter two claims are supported, it would suggest a more nuanced account of the MNL hypothesis is required. To investigate these claims, 84 participants completed a NP and an alphabet-to-position task in which they marked the position of numbers/letters on a horizontal line. Of interest was whether: (1) similar judgment deviations from linearity occurred for number/letter stimuli; (2) left-to-right or right-to-left lines similarly, affected number/letter judgments; and (3) response times (RTs) differed as a function of number/letter stimuli and/or reverse/standard lines. While RTs were slower marking letter stimuli compared to number stimuli, they did not differ in the standard compared to the reverse number/letter lines. Furthermore, similar patterns of non-linear RTs were found marking stimuli on the number/letter lines, suggesting that similar strategic processes were at play. These findings suggest that a general mental representation may underlie ordered list processing and that a linear mental representation is not a unique feature of number per se. This is consistent with the hypothesis that number is supported by a representation that lends itself to processing ordered sequences in general
A Dynamical Resolution of the Sigma Term Puzzle
We propose a resolution of the puzzle posed by the discrepancy between the
pion-nucleon sigma term inferred from pion-nucleon scattering, and that deduced
from baryon mass splittings using the Zweig rule. We show that there is a
significant hypercharge-dependent dynamical contribution to baryon masses, not
hitherto included in the analysis, which may be estimated using the scale Ward
identity, and computed by solution of the Schwinger-Dyson equation for the
quark self-energy. We find that the discrepancy is completely resolved without
the need for any Zweig rule violation.Comment: 14 pages and 4 figures (not included), plain TeX and harvmac, DFTT
92/69 and OUTP-92-35
Implications of Change/Stability Patterns in Children’s Non-symbolic and Symbolic Magnitude Judgment Abilities Over One Year: A Latent Transition Analysis
Non-symbolic magnitude abilities are often claimed to support the acquisition of symbolic magnitude abilities, which, in turn, are claimed to support emerging math abilities. However, not all studies find links between non-symbolic and symbolic magnitude abilities, or between them and math ability. To investigate possible reasons for these different findings, recent research has analyzed differences in non-symbolic/symbolic magnitude abilities using latent class modeling and has identified four different magnitude ability profiles residing within the general magnitude ability distribution that were differentially related to cognitive and math abilities. These findings may help explain the different patterns of findings observed in previous research. To further investigate this possibility, we (1) attempted to replicate earlier findings, (2) determine whether magnitude ability profiles remained stable or changed over 1 year; and (3) assessed the degree to which stability/change in profiles were related to cognitive and math abilities. We used latent transition analysis to investigate stability/changes in non-symbolic and symbolic magnitude abilities of 109 5- to 6-year olds twice in 1 year. At Time 1 and 2, non-symbolic and symbolic magnitude abilities, number transcoding and single-digit addition abilities were assessed. Visuospatial working memory (VSWM), naming numbers, non-verbal IQ, basic RT was also assessed at Time 1. Analysis showed stability in one profile and changes in the three others over 1 year. VSWM and naming numbers predicted profile membership at Time 1 and 2, and profile membership predicted math abilities at both time points. The findings confirm the existence of four different non-symbolic–symbolic magnitude ability profiles; we suggest the changes over time in them potentially reflect deficit, delay, and normal math developmental pathways
Predicting perceptual decision biases from early brain activity
Perceptual decision making is believed to be driven by the accumulation of sensory evidence following stimulus encoding. More controversially, some studies report that neural activity preceding the stimulus also affects the decision process. We used a multivariate pattern classification approach for the analysis of the human electroencephalogram (EEG) to decode choice outcomes in a perceptual decision task from spatially and temporally distributed patterns of brain signals. When stimuli provided discriminative information, choice outcomes were predicted by neural activity following stimulus encoding; when stimuli provided no discriminative information, choice outcomes were predicted by neural activity preceding the stimulus. Moreover, in the absence of discriminative information, the recent choice history primed the choices on subsequent trials. A diffusion model fitted to the choice probabilities and response time distributions showed that the starting point of the evidence accumulation process was shifted toward the previous choice, consistent with the hypothesis that choice priming biases the accumulation process toward a decision boundary. This bias is reflected in prestimulus brain activity, which, in turn, becomes predictive of future decisions. Our results provide a model of how non-stimulus-driven decision making in humans could be accomplished on a neural level
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Influence of chromaticity on vernier and stereo acuity.
Vernier offset thresholds for targets modulated in luminance or isoluminantly along the L-M axis were confirmed to be equal for targets whose contrasts were equal multiples of those required for detection. On the other hand, stereoscopic depth thresholds were elevated by a factor of 10 or more for isoluminantly modulated targets. Thresholds for vernier targets are 2 or 3 times larger with a gap of 20 arcmin than for a gap of 1 arcmin for both isoluminant and luminance targets. On the other hand, stereo thresholds decrease by a factor of 2 to 3 for both classes of target over the same range. We consider our results in the light of recent electrophysiological and psychophysical evidence and conclude that our results are consistent with the notion that stereo thresholds are mediated by a single class of mechanism for targets modulated in luminance or isoluminantly. We test and reject the hypothesis that stereopsis is subserved by independent chromatic and luminance mechanisms
Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be)
Transcranial Direct Current Stimulation (tDCS) is a neuromodulatory device often publicized for its ability to enhance cognitive and behavioral performance. These enhancement claims, however, are predicated upon electrophysiological evidence and descriptions which are far from conclusive. In fact, a review of the literature reveals a number of important experimental and technical issues inherent with this device that are simply not being discussed in any meaningful manner. In this paper, we will consider five of these topics. The first, inter-subject variability, explores the extensive between- and within-group differences found within the tDCS literature and highlights the need to properly examine stimulatory response at the individual level. The second, intra-subject reliability, reviews the lack of data concerning tDCS response reliability over time and emphasizes the importance of this knowledge for appropriate stimulatory application. The third, sham stimulation and blinding, draws attention to the importance (yet relative lack) of proper control and blinding practices in the tDCS literature. The fourth, motor and cognitive interference, highlights the often overlooked body of research that suggests typical behaviors and cognitions undertaken during or following tDCS can impair or abolish the effects of stimulation. Finally, the fifth, electric current influences, underscores several largely ignored variables (such as hair thickness and electrode attachments methods) influential to tDCS electric current density and flow.Through this paper, we hope to increase awareness and start an ongoing dialogue of these important issues which speak to the efficacy, reliability, and mechanistic foundations of tDCS.<br/