1,911 research outputs found
Unintended targeting of Dmp1-Cre reveals a critical role for Bmpr1a signaling in the gastrointestinal mesenchyme of adult mice
Cre/loxP technology has been widely used to study cell type-specific functions of genes. Proper interpretation of such data critically depends on a clear understanding of the tissue specificity of Cre expression. The Dmp1-Cre mouse, expressing Cre from a 14-kb DNA fragment of the mouse Dmp1 gene, has become a common tool for studying gene function in osteocytes, but the presumed cell specificity is yet to be fully established. By using the Ai9 reporter line that expresses a red fluorescent protein upon Cre recombination, we find that in 2-month-old mice, Dmp1-Cre targets not only osteocytes within the bone matrix but also osteoblasts on the bone surface and preosteoblasts at the metaphyseal chondro-osseous junction. In the bone marrow, Cre activity is evident in certain stromal cells adjacent to the blood vessels, but not in adipocytes. Outside the skeleton, Dmp1-Cre marks not only the skeletal muscle fibers, certain cells in the cerebellum and the hindbrain but also gastric and intestinal mesenchymal cells that express Pdgfra. Confirming the utility of Dmp1-Cre in the gastrointestinal mesenchyme, deletion of Bmpr1a with Dmp1-Cre causes numerous large polyps along the gastrointestinal tract, consistent with prior work involving inhibition of BMP signaling. Thus, caution needs to be exercised when using Dmp1-Cre because it targets not only the osteoblast lineage at an earlier stage than previously appreciated, but also a number of non-skeletal cell types
Laparoscopic Assisted Fusion of the Lumbosacral Spine: A Biomechanical and Histologic Analysis of the Open Versus Laparoscopic Technique in an Animal Model
Study Design. An animal model for laparoscopic lumbosacral fusion.
Objectives. To compare the biomechanical and histologic results of open to laparoscopic lumbosacral discectomy and fusion in an animal model.
Background Data. Early clinical reports of laparoscopic lumbosacral fusions are encouraging, but animal experiments have not been reported.
Methods. Ten pigs (50-80 kg) were divided into two groups. Group 1 underwent an open anterior lumbosacral discectomy and fusion at L7-S1 using autologous bone graft and a titanium MOSS (DePuy Motech) cage. Group 2 was identical to Group 1 except that a laparoscopic technique was used. The animals were killed at 3 months, and the lumbosacral spines were harvested for biomechanical and histologic testing.
Results. Estimated blood loss and average length of operation, respectively, for the two groups were: Group 1, 50 mL, 2 hours 50 minutes; and Group 2, 40 mL, 3 hours 40 minutes. There were no perioperative or postoperative complications in either group. Motion analysis results showed less motion in lateral bending, flexion, and extension than in the intact specimen in both groups. Tensile testing showed that the stiffness was significantly greater in the open group than in the laparoscopic group (P \u3c 0.004). Histologic examination showed a less extensive discectomy and less bone growth in the implant in the laparoscopic group. Inadequate decortication of end-plates occurred in two animals who underwent laparoscopy.
Conclusions. Although lumbosacral discectomy and implant insertion can be performed using the laparoscopic technique, the construct may not have the same biomechanical strength as that attained with the open procedure. Laparoscopic-assisted lumbosacral fusion surgery requires additional investigation before it is widely used in clinical situations
Approaches for Detecting Lysosomal Alkalinization and Impaired Degradation in Fresh and Cultured RPE Cells: Evidence for a Role in Retinal Degenerations
Lysosomes contribute to a multitude of cellular processes, and the pH of the lysosomal lumen plays a central mechanistic role in many of these functions. In addition to controlling the rate of enzymatic degradation for material delivered through autophagic or phagocytotic pathways, lysosomal pH regulates events such as lysosomal fusion with autophagosomes and the release of lysosomal calcium into the cytoplasm. Disruption of either the steady state lysosomal pH or of the regulated manipulations to lysosomal pH may be pathological. For example, chloroquine elevates the lysosomal pH of retinal pigmented epithelial (RPE) cells and triggers a retinopathy characterized by the accumulation of lipofuscin-like material in both humans and animals. Compensatory responses to restore lysosomal pH are observed; new data illustrate that chronic chloroquine treatment increases mRNA expression of the lysosomal/autophagy master transcription factor TFEB and of the vesicular proton pump vHATPase in the RPE/choroid of mice. An elevated lysosomal pH with upregulation of TFEB and vHATPase resembles the pathology in fibroblasts of patients with mutant presenilin 1 (PS1), suggesting a common link between age-related macular degeneration (AMD) and Alzheimer’s disease. While the absolute rise in pH is often small, elevations of only a few tenths of a pH unit can have a major impact on both lysosomal function and the accumulation of waste over decades. Accurate measurement of lysosomal pH can be complex, and imprecise measurements have clouded the field. Protocols to optimize pH measurement from fresh and cultured cells are discussed, and indirect measurements to confirm changes in lysosomal pH and degradative capacity are addressed. The ability of reacidifying treatments to restore degradative function confirms the central role of lysosomal pH in these functions and identifies potential approaches to treat diseases of accumulation like AMD and Alzheimer’s disease. In summary, various approaches to determine lysosomal pH in fresh and cultured cells, as well as the potential to restore pH levels to an optimal range, can help identify and repair pathologies associated with lysosomal defects in RPE cells and perhaps also suggest new approaches to treat lysosomal storage diseases throughout the body
Effects of Lidocaine and Articaine on Neuronal Survival and Recovery
The local anesthetics lidocaine and articaine are among the most widely used drugs in the dentist’s arsenal, relieving pain by blocking voltage-dependent Naþ channels and thus preventing transmission of the pain signal. Given reports of infrequent but prolonged paresthesias with 4% articaine, we compared its neurotoxicity and functional impairment by screening cultured neural SH-SY5Y cells with formulations used in patients (2% lidocaine + 1:100,000 epinephrine or 4% articaine + 1:100,000 epinephrine) and with pure formulations of the drugs. Voltage-dependent sodium channels Na(v)1.2 and Na(v)1.7 were expressed in SH-SY5Y cells. To test the effects on viability, cells were exposed to drugs for 5 minutes, and after washing, cells were treated with the ratiometric Live/Dead assay. Articaine had no effect on the survival of SH-SY5Y cells, while lidocaine produced a significant reduction only when used as pure powder. To determine reversibility of blockage, wells were exposed to drugs for 5 minutes and returned for medium for 30 minutes, and the calcium elevation induced by depolarizing cells with a high-potassium solution was measured using the calcium indicator Fura-2. High potassium raised calcium in control SH-SY5Y cells and those treated with articaine, but lidocaine treatment significantly reduced the response. In conclusion, articaine does not damage neural cells more than lidocaine in this in vitro model. While this does not question the safety of lidocaine used clinically, it does suggest that articaine is no more neurotoxic, at least in the in vitro setting. © 2018 by the American Dental Society of Anesthesiology
The role of the systemic inflammatory response in predicting outcomes in patients with operable cancer: Systematic review and meta-analysis
Cancer remains a leading causes of death worldwide and an elevated systemic inflammatory response (SIR) is associated with reduced survival in patients with operable cancer. This review aims to examine the evidence for the role of systemic inflammation based prognostic scores in patients with operable cancers. A wide-ranging literature review using targeted medical subject headings for human studies in English was carried out in the MEDLINE, EMBASE, and CDSR databases until the end of 2016. The SIR has independent prognostic value, across tumour types and geographical locations. In particular neutrophil lymphocyte ratio (NLR) (n = 158), platelet lymphocyte ratio (PLR) (n = 68), lymphocyte monocyte ratio (LMR) (n = 21) and Glasgow Prognostic Score/ modified Glasgow Prognostic Score (GPS/mGPS) (n = 60) were consistently validated. On meta-analysis there was a significant relationship between elevated NLR and overall survival (OS) (p < 0.00001)/ cancer specific survival (CSS) (p < 0.00001), between elevated LMR and OS (p < 0.00001)/CSS (p < 0.00001), and elevated PLR and OS (p < 0.00001)/CSS (p = 0.005). There was also a significant relationship between elevated GPS/mGPS and OS (p < 0.00001)/CSS (p < 0.00001). These results consolidate the prognostic value of the NLR, PLR, LMR and GPS/mGPS in patients with resectable cancers. This is particularly true for the NLR/GPS/mGPS which should form part of the routine preoperative and postoperative workup
The global burden of plastics in oral health: prospects for circularity, sustainable materials development and practice
Plastics are indispensable and ubiquitous materials in oral healthcare and dental applications, favored for their diversity in structure and properties, low cost, durability, chemical and water resistance, ease of processing, and shaping. However, ancillary plastics are used for short periods or even once due to hygiene concerns and convenience, and insufficient attention has been given to their unsustainable current usage and end-of-life. Thus, the amount of plastic waste generated by consumers and clinicians is staggering and projected to increase unabatedly for the foreseeable future. With recent advances in plastics recycling and sustainable polymers, it is time to consider alternatives to tackle dentistry's growing plastic waste problem. This Perspectives article highlights the sources and scale of dental plastic wastage, followed by a multi-pronged consideration of material and practical interventions for this issue. On the materials front, we discuss emerging approaches and alternative sustainable polymers to address the unsustainable end-of-life of existing petroleum-based dental plastics/polymers and enable material circularity. On the practical front, we discuss strategies for sustainable plastic usage, which must be implemented alongside complementary material approaches. These approaches highlight the abundant unrealized opportunities for developing a circular economy around dental plastics while reducing the environmental footprint of modern dentistr
Phosphate selective binding and sensing by halogen bonding tripodal copper( ii ) metallo-receptors in aqueous media â€
Combining the potency of non-covalent halogen bonding (XB) with metal ion coordination, the synthesis and characterisation of a series of hydrophilic XB tripodal Cu(ii) metallo-receptors, strategically designed for tetrahedral anion guest binding and sensing in aqueous media is described. The reported metallo-hosts contain a tripodal C3-symmetric tris-iodotriazole XB donor anion recognition motif terminally functionalised with tri(ethylene glycol) and permethylated β-cyclodextrin functionalities to impart aqueous solubility. Optical UV-vis anion binding studies in combination with unprecedented quantitative EPR anion titration investigations reveal the XB Cu(ii) metallo-receptors exhibit strong and selective phosphate recognition over a range of other monocharged anionic species in competitive aqueous solution containing 40% water, notably outperforming a hydrogen bonding (HB) Cu(ii) metallo-receptor counterpart. Electrochemical studies demonstrate further the capability of the metallo-receptors to sense anions via significant cathodic perturbations of the respective Cu(ii)/Cu(i) redox couple
P2X7 Receptor Primes IL-1β and the NLRP3 Inflammasome in Astrocytes Subjected to Mechanical Strain
Inflammatory responses play a key role in many neural pathologies, with localized signaling from non-immune cells making critical contributions. The NLRP3 inflammasome is an important component of innate immune signaling and can link neural insult to chronic inflammation. Stimulation of the NLRP3 inflammasome is a two-stage process. The priming stage involves upregulation of the biosynthesis of the structural components while activation results in their assembly into the actual inflammasome complex and subsequent activation. The priming step can be rate limiting and can connect insult to chronic inflammation but our knowledge of the signals that regulate NLRP3 inflammasome priming in sterile inflammatory conditions is limited. This study examined the link between mechanical strain and inflammasome priming in neural systems. Transient non-ischemic elevation of intraocular pressure (IOP) increased mRNA for inflammasome components IL-1β, NLRP3, ASC, CASP1 and IL-6 in rat and mouse retinas. The P2X7 receptor was implicated in the in vivo mechanosensitive priming of IL-1β and IL-6 transcription and translation. In vitro experiments with optic nerve head astrocytes demonstrated enhanced expression of the IL-1β and IL-6 genes following stretching or swelling. The increase in IL-1β expression was inhibited by degradation of extracellular ATP with apyrase, blocking pannexin hemichannels with carbenoxolone, probenecid or 10Panx1 peptide, P2X7 receptor antagonists (BBG, A839977 or A740003) as well inhibition of the NFκB transcription factor with Bay 11-7082. The swelling-dependent fall in expression of the NFκB inhibitor IκB-α was reduced by treatment of cells with A839977 and in P2X7 knockout mice. In summary, our data suggest that mechanical trauma to the retina results in priming of the NLRP3 inflammasome components and upregulated IL-6 expression and release. This was dependent upon ATP release through pannexin hemichannels and autostimulation of the P2X7 receptor. Since the P2X7 receptor can also trigger inflammasome activation it appears to have a central role in linking mechanical strain to neuroinflammation
Neurofunctional Correlates of Ethical, Food-Related Decision-Making
A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author’s publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.For consumers today, the perceived ethicality of a food’s production method can be as important a purchasing consideration as its price. Still, few studies have examined how, neurofunctionally, consumers are making ethical, food-related decisions. We examined how consumers’ ethical concern about a food’s production method may relate to how, neurofunctionally, they make decisions whether to purchase that food. Forty-six participants completed a measure of the extent to which they took ethical concern into consideration when making food-related decisions. They then underwent a series of functional magnetic resonance imaging (fMRI) scans while performing a food-related decision-making (FRDM) task. During this task, they made 56 decisions whether to purchase a food based on either its price (i.e., high or low, the “price condition”) or production method (i.e., with or without the use of cages, the “production method condition”), but not both. For 23 randomly selected participants, we performed an exploratory, whole-brain correlation between ethical concern and differential neurofunctional activity in the price and production method conditions. Ethical concern correlated negatively and significantly with differential neurofunctional activity in the left dorsolateral prefrontal cortex (dlPFC). For the remaining 23 participants, we performed a confirmatory, region-of-interest (ROI) correlation between the same variables, using an 8-mm3 volume situated in the left dlPFC. Again, the variables correlated negatively and significantly. This suggests, when making ethical, food-related decisions, the more consumers take ethical concern into consideration, the less they may rely on neurofunctional activity in the left dlPFC, possibly because making these decisions is more routine for them, and therefore a more perfunctory process requiring fewer cognitive resources
- …