6 research outputs found

    Cocaine Directly Inhibits α6-Containing Nicotinic Acetylcholine Receptors in Human SH-EP1 Cells and Mouse VTA DA Neurons

    Get PDF
    Alpha6-containing nicotinic acetylcholine receptors are primarily found in neurons of the midbrain dopaminergic (DA) system, suggesting these receptors are potentially involved in drug reward and dependence. Here, we report a novel effect that cocaine directly inhibits α6N/α3Cβ2β3-nAChR (α6*-nAChRs) function. Human α6*-nAChRs were heterologously expressed within cells of the SH-EP1 cell line for functional characterization. Mechanically dissociated DA neurons from mouse ventral tegmental area (VTA) were used as a model of presynaptic α6*-nAChR activation since this method preserves terminal boutons. Patch-clamp recordings in whole-cell configuration were used to measure α6*-nAChR function as well as evaluate the effects of cocaine. In SH-EP1 cells containing heterologously expressed human α6*-nAChRs, cocaine inhibits nicotine-induced inward currents in a concentration-dependent manner with an IC50 value of 30 μM. Interestingly, in the presence of 30 μM cocaine, the maximal current response of the nicotine concentration-response curve is reduced without changing nicotine’s EC50 value, suggesting a noncompetitive mechanism. Furthermore, analysis of whole-cell current kinetics demonstrated that cocaine slows nAChR channel activation but accelerates whole-cell current decay time. Our findings demonstrate that cocaine-induced inhibition occurs solely with bath application, but not during intracellular administration, and this inhibition is not use-dependent. Additionally, in Xenopus oocytes, cocaine inhibits both α6N/α3Cβ2β3-nAChRs and α6M211L/α3ICβ2β3-nCAhRs similarly, suggesting that cocaine may not act on the α3 transmembrane domain of chimeric α6N/α3Cβ2β3-nAChR. In mechanically isolated VTA DA neurons, cocaine abolishes α6*-nAChR-mediated enhancement of spontaneous inhibitory postsynaptic currents (sIPSCs). Collectively, these studies provide the first evidence that cocaine directly inhibits the function of both heterologously and naturally expressed α6*-nAChRs. These findings suggest that α6*-nAChRs may provide a novel pharmacological target mediating the effects of cocaine and may underlie a novel mechanism of cocaine reward and dependence

    Cocaine potently blocks neuronal α

    No full text
    Cocaine is one of the most abused illicit drugs worldwide. It is well known that the dopamine (DA) transporter is its major target; but cocaine also acts on other targets including nicotinic acetylcholine receptors (nAChRs). In this study, we investigated the effects of cocaine on a special subtype of neuronal nAChR,

    Alpha6-Containing Nicotinic Acetylcholine Receptor Is A Highly Sensitive Target Of Alcohol

    No full text
    Alcohol use disorder (AUD) is a serious public health problem that results in tremendous social, legal and medical costs to society. Unlike other addictive drugs, there is no specific molecular target for ethanol (EtOH). Here, we report a novel molecular target that mediates EtOH effects at concentrations below those that cause legally-defined inebriation. Using patch-clamp recording of human α6*-nicotinic acetylcholine receptor (α6*-nAChR) function when heterologously expressed in SH-EP1 human epithelial cells, we found that 0.1–5 mM EtOH significantly enhances α6*-nAChR-mediated currents with effects that are dependent on both EtOH and nicotine concentrations. EtOH exposure increased both whole-cell current rising slope and decay constants. This EtOH modulation was selective for α6*-nAChRs since it did not affect α3β4-, α4β2-, or α7-nAChRs. In addition, 5 mM EtOH also increased the frequency and amplitude of dopaminergic neuron transients in mouse brain nucleus accumbens slices, that were blocked by the α6*-nAChR antagonist, α-conotoxin MII, suggesting a role for native α6*-nAChRs in low-dose EtOH effects. Collectively, our data suggest that α6*-nAChRs are sensitive targets mediating low-dose EtOH effects through a positive allosteric mechanism, which provides new insight into mechanisms involved in pharmacologically-relevant alcohol effects contributing to AUD

    Pharmacological And Functional Comparisons Of α6/α3β2β3-Nachrs And α4β2-Nachrs Heterologously Expressed In The Human Epithelial Sh-Ep1 Cell Line

    No full text
    Neuronal nicotinic acetylcholine receptors containing α6 subunits (α6 * -nAChRs) show highly restricted distribution in midbrain neurons associated with pleasure, reward, and mood control, suggesting an important impact of α6 * -nAChRs in modulating mesolimbic functions. However, the function and pharmacology of α6 * -nAChRs remain poorly understood because of the lack of selective agonists for α6 * -nAChRs and the challenging heterologous expression of functional α6 * -nAChRs in mammalian cell lines. In particular, the α6 subunit is commonly co-expressed with α4 * -nAChRs in the midbrain, which masks α6 * -nAChR (without α4) function and pharmacology. In this study, we systematically profiled the pharmacology and function of α6 * -nAChRs and compared these properties with those of α4β2 nAChRs expressed in the same cell line. Heterologously expressed human α6/α3 chimeric subunits (α6 N-terminal domain joined with α3 trans-membrane domains and intracellular loops) with β2 and β3 subunits in the human SH-EP1 cell line (α6 * -nAChRs) were used. Patch-clamp whole-cell recordings were performed to measure these receptor-mediated currents. Functionally, the heterologously expressed α6 * -nAChRs exhibited excellent function and showed distinct nicotine-induced current responses, such as kinetics, inward rectification and recovery from desensitization, compared with α4β2-nAChRs. Pharmacologically, α6 * -nAChR was highly sensitive to the α6 subunit-selective antagonist α-conotoxin MII but had lower sensitivity to mecamylamine and dihydro-β-erythroidine. Nicotine and acetylcholine were found to be full agonists for α6 * -nAChRs, whereas epibatidine and cytisine were determined to be partial agonists. Heterologously expressed α6 * -nAChRs exhibited pharmacology and function distinct from those of α4β2-nAChRs, suggesting that α6 * -nAChRs may mediate different cholinergic signals. Our α6 * -nAChR expression system can be used as an excellent cell model for future investigations of α6 * -nAChR function and pharmacology

    Cocaine Potently Blocks Neuronal α3β4 Nicotinic Acetylcholine Receptors In Sh-Sy5Y Cells

    No full text
    Cocaine is one of the most abused illicit drugs worldwide. It is well known that the dopamine (DA) transporter is its major target; but cocaine also acts on other targets including nicotinic acetylcholine receptors (nAChRs). In this study, we investigated the effects of cocaine on a special subtype of neuronal nAChR, α3β4-nAChR expressed in native SH-SY5Y cells. α3β4-nAChR-mediated currents were recorded using whole-cell recordings. Drugs were applied using a computer-controlled U-tube drug perfusion system. We showed that bath application of nicotine induced inward currents in a concentration-dependent manner with an EC50 value of 20 µM. Pre-treatment with cocaine concentration-dependently inhibited nicotine-induced current with an IC50 of 1.5 μM. Kinetic analysis showed that cocaine accelerated α3β4-nAChR desensitization, which caused a reduction of the amplitude of nicotine-induced currents. Co-application of nicotine and cocaine (1.5 μM) depressed the maximum response on the nicotine concentration-response curve without changing the EC50 value, suggesting a non-competitive mechanism. The cocaine-induced inhibition of nicotine response exhibited both voltage- and use-dependence, suggesting an open-channel blocking mechanism. Furthermore, intracellular application of GDP-βS (via recording electrode) did not affect cocaine-induced inhibition, suggesting that cocaine did not alter receptor internalization. Moreover, intracellular application of cocaine (30 µM) failed to alter the nicotine response. Finally, cocaine (1.5 μM) was unable to inhibit the nicotine-induced inward current in heterologous expressed α6/α3β2β3-nAChRs and α4β2-nAChRs expressed in human SH-EP1 cells. Collectively, our results suggest that cocaine is a potent blocker for native α3β4-nAChRs expressed in SH-SY5Y cells
    corecore