105 research outputs found
The relationship between mindfulness and ambiguity tolerance
While ambiguity may be a universal experience, it fluctuates depending on the circumstances. As there is no single definition of ambiguity, its manifestations range from role uncertainty to chaos to simple process issues. Because it is impractical and undesirable to completely eliminate ambiguity, an increased ability to tolerate ambiguity plays an important role in allowing individuals to cope with ambiguity in productive ways. Among the previously studied coping mechanism is mindfulness. The purpose of this study is to examine whether there is a relationship between individuals who self-report high levels of mindfulness and an increased ability to tolerate with ambiguity. A convenience sample of eight employees were interviewed and took a measure on mindfulness and ambiguity tolerance. Key findings were that there is a probable relationship between a higher level of mindfulness and an increased ability to tolerate ambiguity, which is consistent with other research findings
Parallel NFS Block Layout Module for Linux
This position statement presents CITI's Linux prototype of NFSv4.1 pNFS client block layout module and reviews our implementation approach. CITI's prototype implements the IETF draft specification draft-ietf-nfsv4-pnfs-block and is one of three layout modules being developed along with the Linux pNFS generic client, which implements the draft-ietf-nfsv4-minorversion1 specification. The block layout module provides for an I/O data path over iSCSI directly to client SCSI devices identified by the pNFS block server.http://deepblue.lib.umich.edu/bitstream/2027.42/107895/1/citi-tr-08-1.pd
Systemic Copper Disorders Influence the Olfactory Function in Adult Rats: Roles of Altered Adult Neurogenesis and Neurochemical Imbalance
Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a “switch”-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction
Reducing Electronic Information Overload
College students receive a wealth of information through electronic communications that
they are unable to process efficiently. This information overload negatively impacts their
affect, which is officially defined in the field of psychology as the experience of feeling
or emotion. To address this problem, we postulated that we could create an application
that organizes and presents incoming content in a manner that optimizes users’ ability to
process information. First, we conducted surveys that quantitatively measured each
participant’s psychological affect while handling electronic communications, which was
used to tailor the features of the application to what the user’s desire. After designing
and implementing the application, we again measured the user's affect using this product.
Our goal was to find that the program promoted a positive change in affect. Our
application, Brevitus, was able to match Gmail on affect reduction profiles, while
succeeding in implementing certain user interface specifications
PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management: The PREVENT multi-center study
BACKGROUND: Recommended structured clinical practices including implant technique, anti-coagulation strategy, and pump speed management (PREVENT [PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management] recommendations) were developed to address risk of early (<3 months) pump thrombosis (PT) risk with HeartMate II (HMII; St. Jude Medical, Inc. [Thoratec Corporation], Pleasanton, CA). We prospectively assessed the HMII PT rate in the current era when participating centers adhered to the PREVENT recommendations.
METHODS: PREVENT was a prospective, multi-center, single-arm, non-randomized study of 300 patients implanted with HMII at 24 participating sites. Confirmed PT (any suspected PT confirmed visually and/or adjudicated by an independent assessor) was evaluated at 3 months (primary end-point) and at 6 months after implantation.
RESULTS: The population included 83% men (age 57 years ± 13), 78% destination therapy, and 83% Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) Profile 1-3. Primary end-point analysis showed a confirmed PT of 2.9% at 3 months and 4.8% at 6 months. Adherence to key recommendations included 78% to surgical recommendations, 95% to heparin bridging, and 79% to pump speeds ≥9,000 RPMs (92% >8,600 RPMs). Full adherence to implant techniques, heparin bridging, and pump speeds ≥9,000 RPMs resulted in a significantly lower risk of PT (1.9% vs 8.9%; p < 0.01) and lower composite risk of suspected thrombosis, hemolysis, and ischemic stroke (5.7% vs 17.7%; p < 0.01) at 6 months.
CONCLUSIONS: Adoption of all components of a structured surgical implant technique and clinical management strategy (PREVENT recommendations) is associated with low rates of confirmed PT
Assessment of an in vitro whole cigarette smoke exposure system: The Borgwaldt RM20S 8-syringe smoking machine
<p>Abstract</p> <p>Background</p> <p>There have been many recent developments of <it>in vitro </it>cigarette smoke systems closely replicating <it>in vivo </it>exposures. The Borgwaldt RM20S smoking machine (RM20S) enables the serial dilution and delivery of cigarette smoke to exposure chambers for <it>in vitro </it>analyses. In this study we have demonstrated reliability and robustness testing of the RM20S in delivering smoke to <it>in vitro </it>cultures using an in-house designed whole smoke exposure chamber.</p> <p>Results</p> <p>The syringe precision and accuracy of smoke dose generated by the RM20S was assessed using a methane gas standard and resulted in a repeatability error of ≤9%. Differential electrical mobility particle spectrometry (DMS) measured smoke particles generated from reference 3R4F cigarettes at points along the RM20S. 53% ± 5.9% of particles by mass reached the chamber, the remainder deposited in the syringe or connecting tubing and ~16% deposited in the chamber. Spectrofluorometric quantification of particle deposition within chambers indicated a positive correlation between smoke concentration and particle deposition. <it>In vitro </it>air-liquid interface (ALI) cultures (H292 lung epithelial cells), exposed to whole smoke (1:60 dilution (smoke:air, equivalent to ~5 μg/cm<sup>2</sup>)) demonstrated uniform smoke delivery within the chamber.</p> <p>Conclusions</p> <p>These results suggest this smoke exposure system is a reliable and repeatable method of generating and exposing ALI <it>in vitro </it>cultures to cigarette smoke. This system will enable the evaluation of future tobacco products and individual components of cigarette smoke and may be used as an alternative <it>in vitro </it>tool for evaluating other aerosols and gaseous mixtures such as air pollutants, inhaled pharmaceuticals and cosmetics.</p
Variants of the human RAD52 gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast
RAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, HsRAD52 in rad52 mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that HsRAD52 supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery. In this study we report that naturally occurring variants of HsRAD52, one of which suppresses the pathogenicity of BRCA2 mutations, were unable to suppress the IR sensitivity and HRR defects of rad52 mutant yeast cells, but fully suppressed a defect in DSB repair by single-strand annealing (SSA). This failure to suppress both IR sensitivity and the HRR defect correlated with an inability of HsRAD52 protein to associate with and drive an interaction between genomic sequences during DSB repair by HRR. These results suggest that HsRAD52 supports multiple, distinct DSB repair apparatuses in budding yeast cells and help further define its mechanism of action in HRR. They also imply that disruption of HsRAD52-dependent HRR in BRCA2-defective human cells may contribute to protection against tumorigenesis and provide a target for killing BRCA2-defective cancers
HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention
Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy
Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)
MAGIS-100 is a next-generation quantum sensor under construction at Fermilab
that aims to explore fundamental physics with atom interferometry over a
100-meter baseline. This novel detector will search for ultralight dark matter,
test quantum mechanics in new regimes, and serve as a technology pathfinder for
future gravitational wave detectors in a previously unexplored frequency band.
It combines techniques demonstrated in state-of-the-art 10-meter-scale atom
interferometers with the latest technological advances of the world's best
atomic clocks. MAGIS-100 will provide a development platform for a future
kilometer-scale detector that would be sufficiently sensitive to detect
gravitational waves from known sources. Here we present the science case for
the MAGIS concept, review the operating principles of the detector, describe
the instrument design, and study the detector systematics.Comment: 65 pages, 18 figure
- …