2 research outputs found

    Role of Epinephrine and Extracorporeal Membrane Oxygenation in the Management of Ischemic Refractory Ventricular Fibrillation

    No full text
    Summary: Extracorporeal membrane oxygenation (ECMO) is used in cardiopulmonary resuscitation (CPR) of refractory cardiac arrest. The authors used a 2 à 2 study design to compare ECMO versus CPR and epinephrine versus placebo in a porcine model of ischemic refractory ventricular fibrillation (VF). Pigs underwent 5 min of untreated VF and 10 min of CPR, and were randomized to receive epinephrine versus placebo for another 35 min. Animals were further randomized to left anterior descending artery (LAD) reperfusion at minute 45 with ongoing CPR versus venoarterial ECMO cannulation at minute 45 of CPR and subsequent LAD reperfusion. Four-hour survival was improved with ECMO whereas epinephrine showed no effect. Key Words: advanced cardiopulmonary life support, cardiac arrest, cardiopulmonary resuscitation, ECMO, extracorporeal membrane oxygenation, ischemic refractory ventricular fibrillation, ST-segment elevation myocardial infarction, ventricular fibrillatio

    Intracoronary Poloxamer 188 Prevents Reperfusion Injury in a Porcine Model of ST-Segment Elevation Myocardial Infarction

    No full text
    Poloxamer 188 (P188) is a nonionic triblock copolymer believed to prevent cellular injury after ischemia and reperfusion. This study compared intracoronary (IC) infusion of P188 immediately after reperfusion with delayed infusion through a peripheral intravenous catheter in a porcine model of ST-segment elevation myocardial infarction (STEMI). STEMI was induced in 55 pigs using 45 min of endovascular coronary artery occlusion. Pigs were then randomized to 4 groups: control, immediate IC P188, delayed peripheral P188, and polyethylene glycol infusion. Heart tissue was collected after 4 h of reperfusion. Assessment of mitochondrial function or infarct size was performed. Mitochondrial yield improved significantly with IC P188 treatment compared with control animals (0.25% vs. 0.13%), suggesting improved mitochondrial morphology and survival. Mitochondrial respiration and calcium retention were also significantly improved with immediate IC P188 compared with control animals (complex I respiratory control index: 7.4 vs. 3.7; calcium retention: 1,152 nmol vs. 386 nmol). This benefit was only observed with activation of complex I of the mitochondrial respiratory chain, suggesting a specific effect from ischemia and reperfusion on this complex. Infarct size and serum troponin I were significantly reduced by immediate IC P188 infusion (infarct size: 13.9% vs. 41.1%; troponin I: 19.2 μg/l vs. 77.4 μg/l). Delayed P188 and polyethylene glycol infusion did not provide a significant benefit. These results demonstrate that intracoronary infusion of P188 immediately upon reperfusion significantly reduces cellular and mitochondrial injury after ischemia and reperfusion in this clinically relevant porcine model of STEMI. The timing and route of delivery were critical to achieve the benefit
    corecore