2 research outputs found
Cancer-Induced Resting Sinus Tachycardia: An Overlooked Clinical Diagnosis
Elevated resting heart rate is frequently observed in cancer patients, and is associated with increased mortality. Although specific chemotherapeutic agents can induce cardiotoxicity, the presence of sinus tachycardia in chemotherapy-naive patients suggests other factors likely contribute to this clinical presentation. Despite its prevalence, cancer-associated resting sinus tachycardia has not been fully recognized and comprehensively described as a separate clinical entity. Secondary effects of cancer, especially structural cardiac changes, secretory factors (inflammatory cytokines), and thromboembolic disease can cause resting tachycardia. Alternatively, rapid heart rate may reflect compensatory mechanisms responding to increased metabolic demands, raised cardiac output states, and even pain. Hence, cancer-associated tachycardia presents a clinical dilemma; acute life-threatening conditions (such as sepsis, pulmonary embolism, etc.) must be ruled out, but cancer itself can explain resting sinus tachycardia and more conservative management can avoid unnecessary testing, cost and patient stress. Furthermore, identification and management of cardiac conditions associated with cancer may improve survival and the quality of life of cancer patients
Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology
ABSTRACTPreclinical evidence suggests that voltage gradients can act as a kind of top-down master regulator during embryogenesis and orchestrate downstream molecular-genetic pathways during organ regeneration or repair. Moreover, electrical stimulation shifts response to injury toward regeneration instead of healing or scarring. Cancer and embryogenesis not only share common phenotypical features but also commonly upregulated molecular pathways. Voltage-gated ion channel activity is directly or indirectly linked to the pathogenesis of cancer hallmarks, while experimental and clinical studies suggest that their modulation, e.g., by anesthetic agents, may exert antitumor effects. A large recent clinical trial served as a proof-of-principle for the benefit of preoperative use of topical sodium channel blockade as a potential anticancer strategy against early human breast cancers. Regardless of whether ion channel aberrations are primary or secondary cancer drivers, understanding the functional consequences of these events may guide us toward the development of novel therapeutic approaches