21 research outputs found

    Dynamic de novo heterochromatin assembly and disassembly at replication forks ensures fork stability

    Get PDF
    Chromatin is dynamically reorganized when DNA replication forks are challenged. However, the process of epigenetic reorganization and its implication for fork stability is poorly understood. Here we discover a checkpoint-regulated cascade of chromatin signalling that activates the histone methyltransferase EHMT2/G9a to catalyse heterochromatin assembly at stressed replication forks. Using biochemical and single molecule chromatin fibre approaches, we show that G9a together with SUV39h1 induces chromatin compaction by accumulating the repressive modifications, H3K9me1/me2/me3, in the vicinity of stressed replication forks. This closed conformation is also favoured by the G9a-dependent exclusion of the H3K9-demethylase JMJD1A/KDM3A, which facilitates heterochromatin disassembly upon fork restart. Untimely heterochromatin disassembly from stressed forks by KDM3A enables PRIMPOL access, triggering single-stranded DNA gap formation and sensitizing cells towards chemotherapeutic drugs. These findings may help in explaining chemotherapy resistance and poor prognosis observed in patients with cancer displaying elevated levels of G9a/H3K9me3.</p

    Erratum:Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply (The EMBO Journal (2012) 31 (2013-2023) DOI: 10.1038/emboj.2012.55)

    No full text
    Efficient supply of new histones during DNA replication is critical to restore chromatin organization and maintain genome function. The histone chaperone anti-silencing function 1 (Asf1) serves a key function in providing H3.1-H4 to CAF-1 for replication-coupled nucleosome assembly. We identify Codanin-1 as a novel interaction partner of Asf1 regulating S-phase histone supply. Mutations in Codanin-1 can cause congenital dyserythropoietic anaemia type I (CDAI), characterized by chromatin abnormalities in bone marrow erythroblasts. Codanin-1 is part of a cytosolic Asf1–H3.1-H4–Importin-4 complex and binds directly to Asf1 via a conserved B-domain, implying a mutually exclusive interaction with the chaperones CAF-1 and HIRA. Codanin-1 depletion accelerates the rate of DNA replication and increases the level of chromatin-bound Asf1, suggesting that Codanin-1 guards a limiting step in chromatin replication. Consistently, ectopic Codanin-1 expression arrests S-phase progression by sequestering Asf1 in the cytoplasm, blocking histone delivery. We propose that Codanin-1 acts as a negative regulator of Asf1 function in chromatin assembly. This function is compromised by two CDAI mutations that impair complex formation with Asf1, providing insight into the molecular basis for CDAI disease

    Sister Chromatids Are Often Incompletely Aligned in Meristematic and Endopolyploid Interphase Nuclei of Arabidopsis thaliana

    No full text
    We analyzed whether sister chromatids are continuously aligned in meristematic and endopolyploid Arabidopsis interphase nuclei by studying sister-chromatid alignment at various chromosomal positions. FISH with individual BACs to flow-sorted 4C root and leaf nuclei frequently yielded more than two hybridization signals, indicating incomplete or absent sister-chromatid alignment. Up to 100% of 8C, 16C, and 32C nuclei showed no sister-chromatid alignment at defined positions. Simultaneous FISH with BACs from different chromosomal positions revealed more frequent sister-chromatid alignment in terminal than in midarm positions. Centromeric positions were mainly aligned up to a ploidy level of 16C but became separated or dispersed in 32C nuclei. DNA hypomethylation (of the whole genome) and transcriptional activity (at FWA gene position) did not impair sister-chromatid alignment. Only 6.1% of 4C leaf nuclei showed sister-chromatid separation of the entire chromosome 1 top arm territories. Homozygous transgenic tandem repeat (lac operator) arrays showing somatic homologous pairing more often than average euchromatic loci did not promote an increased frequency of sister-chromatid alignment. The high frequency of separated sister-chromatid arm positions in ≥4C nuclei suggests that sister-chromatid cohesion is variable, dynamic, and not obligatory along the entire chromosome arm in meristematic and differentiated Arabidopsis nuclei
    corecore